Discovery of a non-Hermitian phase transition in a bulk condensed-matter system
- URL: http://arxiv.org/abs/2412.16012v1
- Date: Fri, 20 Dec 2024 16:03:45 GMT
- Title: Discovery of a non-Hermitian phase transition in a bulk condensed-matter system
- Authors: Jingwen Li, Michael Turaev, Masakazu Matsubara, Kristin Kliemt, Cornelius Krellner, Shovon Pal, Manfred Fiebig, Johann Kroha,
- Abstract summary: We realize a non-Hermitian phase transition in a bulk condensed-matter system.
In a temperature-dependent interplay with the Hermitian transition to ferromagnetic order, a non-Hermitian change of the relaxation dynamics occurs.
Our theory predicts non-Hermitian phase transitions for a large class of condensed-matter systems.
- Score: 1.4436722857763085
- License:
- Abstract: Phase transitions are fundamental in nature. A small parameter change near a critical point leads to a qualitative change in system properties. Across a regular phase transition, the system remains in thermal equilibrium and, therefore, experiences a change of static properties, like the emergence of a magnetisation upon cooling a ferromagnet below the Curie temperature. When driving a system far from equilibrium, novel, otherwise inaccessible quantum states of matter may arise. Such states are typically non-Hermitian, that is, their dynamics break time-reversal symmetry, a basic law of equilibrium physics. Phase transitions in non-Hermitian systems are of fundamentally new nature in that the dynamical behaviour rather than static properties may undergo a qualitative change at a critical, here called exceptional point. Here we experimentally realize a non-Hermitian phase transition in a bulk condensed-matter system. Optical excitation creates charge carriers in the ferromagnetic semiconductor EuO. In a temperature-dependent interplay with the Hermitian transition to ferromagnetic order, a non-Hermitian change of the relaxation dynamics occurs, manifesting in our time-resolved reflection data as a transition from bi-exponential real to single-exponential complex decay. Our theory models this behavior and predicts non-Hermitian phase transitions for a large class of condensed-matter systems, where they may be exploited to sensitively control bulk-dynamic properties.
Related papers
- Many-body nonequilibrium dynamics in a self-induced Floquet system [2.4898174182192974]
We experimentally demonstrate a self-induced Floquet system in the interacting Rydberg gas.
This originates from the photoionization of thermal Rydberg gases in a static magnetic field.
We probe the nonequilibrium dynamics in the bistable regime and identify the emergence of a discrete time crystalline phase.
arXiv Detail & Related papers (2024-11-07T12:13:02Z) - Entanglement phase transition due to reciprocity breaking without
measurement or post-selection [59.63862802533879]
EPT occurs for a system undergoing purely unitary evolution.
We analytically derive the entanglement entropy out of and at the critical point for the $l=1$ and $l/N ll 1$ case.
arXiv Detail & Related papers (2023-08-28T14:28:59Z) - Theory of the Loschmidt echo and dynamical quantum phase transitions in
disordered Fermi systems [0.0]
We develop the theory of the Loschmidt echo and dynamical phase transitions in non-interacting strongly disordered Fermi systems after a quench.
In finite systems the Loschmidt echo displays zeros in the complex time plane that depend on the random potential realization.
We show that this dynamical phase transition can be understood as a transition in the distribution function of the smallest eigenvalue of the Loschmidt matrix.
arXiv Detail & Related papers (2022-09-22T10:04:45Z) - Continuous phase transition induced by non-Hermiticity in the quantum
contact process model [44.58985907089892]
How the property of quantum many-body system especially the phase transition will be affected by the non-hermiticity remains unclear.
We show that there is a continuous phase transition induced by the non-hermiticity in QCP.
We observe that the order parameter and susceptibility display infinitely even for finite size system, since non-hermiticity endows universality many-body system with different singular behaviour from classical phase transition.
arXiv Detail & Related papers (2022-09-22T01:11:28Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Nonequilibrium phase transition in a driven-dissipative quantum
antiferromagnet [0.0]
This paper provides a numerical study of dynamical phases and the transitions between them in the nonequilibrium steady state of the prototypical two-dimensional Heisenberg antiferromagnet with drive and dissipation.
A finite-size analysis reveals static and dynamical critical scaling at the transition, with a discontinuous slope of the magnon number versus driving field strength and critical slowing down at the transition point.
arXiv Detail & Related papers (2021-07-08T13:35:00Z) - Exceptional Dynamical Quantum Phase Transitions in Periodically Driven
Systems [0.0]
We show that spontaneous symmetry breaking can occur at a short-time regime.
Our results open up research for hitherto unknown phases in short-time regimes.
arXiv Detail & Related papers (2020-12-22T04:04:56Z) - Probing non-Hermitian phase transitions in curved space via quench
dynamics [0.0]
Non-Hermitian Hamiltonians are relevant to describe the features of a broad class of physical phenomena.
We study the interplay of geometry and non-Hermitian dynamics by unveiling the existence of curvature-dependent non-Hermitian phase transitions.
arXiv Detail & Related papers (2020-12-14T19:47:59Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Universality of entanglement transitions from stroboscopic to continuous
measurements [68.8204255655161]
We show that the entanglement transition at finite coupling persists if the continuously measured system is randomly nonintegrable.
This provides a bridge between a wide range of experimental settings and the wealth of knowledge accumulated for the latter systems.
arXiv Detail & Related papers (2020-05-04T21:45:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.