Intelligent Approaches to Predictive Analytics in Occupational Health and Safety in India
- URL: http://arxiv.org/abs/2412.16038v3
- Date: Wed, 01 Jan 2025 00:35:53 GMT
- Title: Intelligent Approaches to Predictive Analytics in Occupational Health and Safety in India
- Authors: Ritwik Raj Saxena,
- Abstract summary: This paper portrays the immense potential of predictive analytics in rejuvenating occupational health and safety practices in India.<n>The paper attempts to explore in what ways it exhibits the potential to address challenges such as fragmented data ecosystems, resource constraints, and the variability of workplace hazards.<n>It urges a shift towards intelligent practices to safeguard the well-being of India's workforce.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Concerns associated with occupational health and safety (OHS) remain critical and often under-addressed aspects of workforce management. This is especially true for high-risk industries such as manufacturing, construction, and mining. Such industries dominate the economy of India which is a developing country with a vast informal sector. Regulatory frameworks have been strengthened over the decades, particularly with regards to bringing the unorganized sector within the purview of law. Traditional approaches to OHS have largely been reactive and rely on post-incident analysis (which is curative) rather than preventive intervention. This paper portrays the immense potential of predictive analytics in rejuvenating OHS practices in India. Intelligent predictive analytics is driven by approaches like machine learning and statistical modeling. Its data-driven nature serves to overcome the limitations of conventional OHS methods. Predictive analytics approaches to OHS in India draw on global case studies and generative applications of predictive analytics in OHS which are customized to Indian industrial contexts. This paper attempts to explore in what ways it exhibits the potential to address challenges such as fragmented data ecosystems, resource constraints, and the variability of workplace hazards. The paper presents actionable policy recommendations to create conditions conducive to the widespread implementation of predictive analytics, which must be advocated as a cornerstone of OHS strategy. In doing so, the paper aims to spark a collaborational dialogue among policymakers, industry leaders, and technologists. It urges a shift towards intelligent practices to safeguard the well-being of India's workforce.
Related papers
- Between Innovation and Oversight: A Cross-Regional Study of AI Risk Management Frameworks in the EU, U.S., UK, and China [0.0]
This paper conducts a comparative analysis of AI risk management strategies across the European Union, United States, United Kingdom (UK), and China.
The findings show that the EU implements a structured, risk-based framework that prioritizes transparency and conformity assessments.
The U.S. uses a decentralized, sector-specific regulations that promote innovation but may lead to fragmented enforcement.
arXiv Detail & Related papers (2025-02-25T18:52:17Z) - AILuminate: Introducing v1.0 of the AI Risk and Reliability Benchmark from MLCommons [62.374792825813394]
This paper introduces AILuminate v1.0, the first comprehensive industry-standard benchmark for assessing AI-product risk and reliability.
The benchmark evaluates an AI system's resistance to prompts designed to elicit dangerous, illegal, or undesirable behavior in 12 hazard categories.
arXiv Detail & Related papers (2025-02-19T05:58:52Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction.<n>Foundation models as the "brain" of EAI agents for high-level task planning have shown promising results.<n>However, the deployment of these agents in physical environments presents significant safety challenges.<n>This study introduces EARBench, a novel framework for automated physical risk assessment in EAI scenarios.
arXiv Detail & Related papers (2024-08-08T13:19:37Z) - Assessing the State of AI Policy [0.5156484100374057]
This work provides an overview of AI legislation and directives at the international, U.S. state, city and federal levels.
It also reviews relevant business standards, and technical society initiatives.
arXiv Detail & Related papers (2024-07-31T16:09:25Z) - Enhancing Cyber Security through Predictive Analytics: Real-Time Threat Detection and Response [0.0]
The study uses a dataset from Kaggle with 2000 instances of network traffic and security events.
The findings show that predictive analytics enhance the vigilance of threats and response time.
This paper advocates for predictive analytics as an essential component for developing preventative cyber security strategies.
arXiv Detail & Related papers (2024-07-15T16:11:34Z) - Privacy Risks of General-Purpose AI Systems: A Foundation for Investigating Practitioner Perspectives [47.17703009473386]
Powerful AI models have led to impressive leaps in performance across a wide range of tasks.
Privacy concerns have led to a wealth of literature covering various privacy risks and vulnerabilities of AI models.
We conduct a systematic review of these survey papers to provide a concise and usable overview of privacy risks in GPAIS.
arXiv Detail & Related papers (2024-07-02T07:49:48Z) - Prioritizing Safeguarding Over Autonomy: Risks of LLM Agents for Science [65.77763092833348]
Intelligent agents powered by large language models (LLMs) have demonstrated substantial promise in autonomously conducting experiments and facilitating scientific discoveries across various disciplines.
While their capabilities are promising, these agents also introduce novel vulnerabilities that demand careful consideration for safety.
This paper conducts a thorough examination of vulnerabilities in LLM-based agents within scientific domains, shedding light on potential risks associated with their misuse and emphasizing the need for safety measures.
arXiv Detail & Related papers (2024-02-06T18:54:07Z) - Insights from the Field: A Comprehensive Analysis of Industrial Accidents in Plants and Strategies for Enhanced Workplace Safety [0.0]
The study delves into 425 industrial incidents documented on Kaggle [1], all of which occurred in 12 separate plants in the South American region.
We aim to uncover valuable insights into the occurrence of accidents, identify recurring trends, and illuminate underlying causes.
arXiv Detail & Related papers (2024-02-02T22:30:18Z) - Predictable Artificial Intelligence [77.1127726638209]
This paper introduces the ideas and challenges of Predictable AI.
It explores the ways in which we can anticipate key validity indicators of present and future AI ecosystems.
We argue that achieving predictability is crucial for fostering trust, liability, control, alignment and safety of AI ecosystems.
arXiv Detail & Related papers (2023-10-09T21:36:21Z) - Risk assessment at AGI companies: A review of popular risk assessment
techniques from other safety-critical industries [0.0]
Companies like OpenAI, Google DeepMind, and Anthropic have the stated goal of building artificial general intelligence (AGI)
There are increasing concerns that AGI would pose catastrophic risks.
This paper reviews popular risk assessment techniques from other safety-critical industries and suggests ways in which AGI companies could use them.
arXiv Detail & Related papers (2023-07-17T20:36:51Z) - Industry Risk Assessment via Hierarchical Financial Data Using Stock Market Sentiment Indicators [0.9463895540925061]
This paper presents an approach to analyzing industry trends leveraging real-time stock market data and generative small language models (SLMs)
One of the key challenges lies in the inherent noise in raw data, which can compromise the precision of statistical analyses.
We propose a dual-pronged approach to industry trend analysis: explicit and implicit analysis.
arXiv Detail & Related papers (2023-03-05T16:17:56Z) - Meta-Learning Priors for Safe Bayesian Optimization [72.8349503901712]
We build on a meta-learning algorithm, F-PACOH, capable of providing reliable uncertainty quantification in settings of data scarcity.
As core contribution, we develop a novel framework for choosing safety-compliant priors in a data-riven manner.
On benchmark functions and a high-precision motion system, we demonstrate that our meta-learned priors accelerate the convergence of safe BO approaches.
arXiv Detail & Related papers (2022-10-03T08:38:38Z) - What Should I Know? Using Meta-gradient Descent for Predictive Feature
Discovery in a Single Stream of Experience [63.75363908696257]
computational reinforcement learning seeks to construct an agent's perception of the world through predictions of future sensations.
An open challenge in this line of work is determining from the infinitely many predictions that the agent could possibly make which predictions might best support decision-making.
We introduce a meta-gradient descent process by which an agent learns what predictions to make, 2) the estimates for its chosen predictions, and 3) how to use those estimates to generate policies that maximize future reward.
arXiv Detail & Related papers (2022-06-13T21:31:06Z) - Modeling and mitigation of occupational safety risks in dynamic
industrial environments [0.0]
This article proposes a method to enable continuous and quantitative assessment of safety risks in a data-driven manner.
A fully Bayesian approach is developed to calibrate this model from safety data in an online fashion.
The proposed model can be leveraged for automated decision making.
arXiv Detail & Related papers (2022-05-02T13:04:25Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Provably Safe PAC-MDP Exploration Using Analogies [87.41775218021044]
Key challenge in applying reinforcement learning to safety-critical domains is understanding how to balance exploration and safety.
We propose Analogous Safe-state Exploration (ASE), an algorithm for provably safe exploration in MDPs with unknown, dynamics.
Our method exploits analogies between state-action pairs to safely learn a near-optimal policy in a PAC-MDP sense.
arXiv Detail & Related papers (2020-07-07T15:50:50Z) - COVI White Paper [67.04578448931741]
Contact tracing is an essential tool to change the course of the Covid-19 pandemic.
We present an overview of the rationale, design, ethical considerations and privacy strategy of COVI,' a Covid-19 public peer-to-peer contact tracing and risk awareness mobile application developed in Canada.
arXiv Detail & Related papers (2020-05-18T07:40:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.