論文の概要: Deep Reinforcement Learning for Long-Short Portfolio Optimization
- arxiv url: http://arxiv.org/abs/2012.13773v8
- Date: Sat, 15 Mar 2025 17:27:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 23:06:57.02111
- Title: Deep Reinforcement Learning for Long-Short Portfolio Optimization
- Title(参考訳): 長短ポートフォリオ最適化のための深層強化学習
- Authors: Gang Huang, Xiaohua Zhou, Qingyang Song,
- Abstract要約: 本稿では,実際の取引ルールに適合する短売制のポートフォリオ管理フレームワークであるDeep Reinforcement Learning (DRL)を構築した。
鍵となるイノベーションは、長期にわたるトランザクションの動的進化を考慮に入れた、継続的取引における包括的な短期販売メカニズムの開発である。
従来のアプローチと比較して、このモデルはリスク調整されたリターンを向上し、最大損失を低減します。
- 参考スコア(独自算出の注目度): 7.131902599861306
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid development of artificial intelligence, data-driven methods effectively overcome limitations in traditional portfolio optimization. Conventional models primarily employ long-only mechanisms, excluding highly correlated assets to diversify risk. However, incorporating short-selling enables low-risk arbitrage through hedging correlated assets. This paper constructs a Deep Reinforcement Learning (DRL) portfolio management framework with short-selling mechanisms conforming to actual trading rules, exploring strategies for excess returns in China's A-share market. Key innovations include: (1) Development of a comprehensive short-selling mechanism in continuous trading that accounts for dynamic evolution of transactions across time periods; (2) Design of a long-short optimization framework integrating deep neural networks for processing multi-dimensional financial time series with mean Sharpe ratio reward functions. Empirical results show the DRL model with short-selling demonstrates significant optimization capabilities, achieving consistent positive returns during backtesting periods. Compared to traditional approaches, this model delivers superior risk-adjusted returns while reducing maximum drawdown. From an allocation perspective, the DRL model establishes a robust investment style, enhancing defensive capabilities through strategic avoidance of underperforming assets and balanced capital allocation. This research contributes to portfolio theory while providing novel methodologies for quantitative investment practice.
- Abstract(参考訳): 人工知能の急速な発展により、データ駆動方式は従来のポートフォリオ最適化の限界を効果的に克服する。
従来のモデルは、リスクを多様化するために非常に相関性の高い資産を除いて、主に長期限定のメカニズムを使用する。
しかし、短期販売の導入は、関連資産のヘッジを通じて低リスクの仲裁を可能にする。
本稿では,中国のA株市場における過剰リターン戦略を探求し,実際の取引規則に適合する短期販売機構を備えたポートフォリオ管理フレームワークを構築する。
1) 長期にわたる取引の動的進化を考慮に入れた連続取引における包括的短売機構の開発,(2) シャープ比報酬関数を用いた多次元金融時系列処理のためのディープニューラルネットワークの統合による長短最適化フレームワークの設計。
実証実験の結果, 短時間販売のDRLモデルは, バックテスト期間中に一貫した正のリターンを達成し, 大幅な最適化能力を示すことがわかった。
従来のアプローチと比較して、このモデルはリスク調整されたリターンを向上し、最大損失を低減します。
割当の観点からは、DRLモデルはロバストな投資スタイルを確立し、未達成資産の戦略的回避とバランスの取れた資本割当を通じて防衛能力を強化する。
この研究はポートフォリオ理論に寄与し、量的投資実践のための新しい方法論を提供する。
関連論文リスト
- BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
本稿では,時系列予測や資産価格の急上昇の予測に特化して,新たな大規模言語モデル(LLM)アーキテクチャであるBreakGPTを紹介する。
我々は、最小限のトレーニングで財務予測を行うための有望なソリューションとしてBreakGPTを紹介し、局所的およびグローバルな時間的依存関係をキャプチャする強力な競合相手として紹介する。
論文 参考訳(メタデータ) (2024-11-09T05:40:32Z) - VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment [66.80143024475635]
VinePPOは不偏のモンテカルロ推定を計算するための簡単な手法である。
我々は、VinePPOが、MATHおよびGSM8Kデータセット間でPPOや他のRLフリーベースラインを一貫して上回ることを示す。
論文 参考訳(メタデータ) (2024-10-02T15:49:30Z) - A Deep Reinforcement Learning Framework For Financial Portfolio Management [3.186092314772714]
ディープラーニング技術によって解決されるポートフォリオ管理の問題である。
このフレームワークを実現するために、CNN(Convolutional Neural Network)、RNN(Basic Recurrent Neural Network)、Long Short-Term Memory(Long Short-Term Memory)という3つの異なるインスタンスが使用される。
我々は、優れたリターンを得られる原紙の複製に成功したが、株式市場に適用されると、うまく機能しない。
論文 参考訳(メタデータ) (2024-09-03T20:11:04Z) - Optimizing Portfolio with Two-Sided Transactions and Lending: A Reinforcement Learning Framework [0.0]
本研究では,リスクの高い環境に適した強化学習に基づくポートフォリオ管理モデルを提案する。
マルチヘッドアテンションを持つ畳み込みニューラルネットワークを用いたソフトアクタ・クリティカル(SAC)エージェントを用いてモデルを実装した。
市場のボラティリティ(変動性)が変化する2つの16カ月間にわたってテストされたこのモデルは、ベンチマークを著しく上回った。
論文 参考訳(メタデータ) (2024-08-09T23:36:58Z) - Developing An Attention-Based Ensemble Learning Framework for Financial Portfolio Optimisation [0.0]
本稿では,アテンション機構や時系列,すなわちMASAATと統合されたマルチエージェントで自己適応的なポートフォリオ最適化フレームワークを提案する。
時系列で財務データのトークンを再構築することにより、各エージェントの注意ベースの横断分析モジュールと時間分析モジュールは、資産と時間点間の依存関係との相関を効果的に捉えることができる。
実験により、MASAATフレームワークは、よく知られたポートフォリオ最適化アプローチと比較して、印象的な拡張を実現していることが明らかとなった。
論文 参考訳(メタデータ) (2024-04-13T09:10:05Z) - Deep Reinforcement Learning and Mean-Variance Strategies for Responsible Portfolio Optimization [49.396692286192206]
本研究では,ESG状態と目的を取り入れたポートフォリオ最適化のための深層強化学習について検討する。
以上の結果から,ポートフォリオアロケーションに対する平均分散アプローチに対して,深層強化学習政策が競争力を発揮する可能性が示唆された。
論文 参考訳(メタデータ) (2024-03-25T12:04:03Z) - Combining Transformer based Deep Reinforcement Learning with
Black-Litterman Model for Portfolio Optimization [0.0]
モデルフリーのアルゴリズムとして、深層強化学習(DRL)エージェントは、教師なしの方法で環境と対話することで学習し、決定する。
DRLエージェントとBlack-Litterman (BL)モデルを組み合わせたハイブリッドポートフォリオ最適化モデルを提案する。
我々のDRLエージェントは、様々な比較ポートフォリオ選択戦略と代替DRLフレームワークを、累積リターンで少なくとも42%上回っている。
論文 参考訳(メタデータ) (2024-02-23T16:01:37Z) - Deep Hedging with Market Impact [0.20482269513546458]
本稿では,Deep Reinforcement Learning(DRL)に基づく新しい市場インパクト動的ヘッジモデルを提案する。
DRLモデルから得られた最適ポリシーは、いくつかのオプションヘッジシミュレーションを用いて分析され、デルタヘッジのような一般的な手順と比較される。
論文 参考訳(メタデータ) (2024-02-20T19:08:24Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
本稿では,これらの投資商品を活用するために,ニューラルネットワークに基づく効果的なアルゴリズムを提案する。
シャープ比を最大化するために、各アセットの割り当て重量を時間間隔で出力するディープニューラルネットワークを訓練する。
ネットワークの特定の資産に対するバイアスを規制する新たな損失項を提案し,最小分散戦略に近い割り当て戦略をネットワークに学習させる。
論文 参考訳(メタデータ) (2023-10-02T12:33:28Z) - Gated Deeper Models are Effective Factor Learners [0.9137554315375922]
2048次元空間においてより有意義な因子を生成する5層ディープニューラルネットワークを提案する。
我々は、最近の3年間の記録で、中国市場から2000種以上の株を評価。
論文 参考訳(メタデータ) (2023-05-18T04:07:47Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
我々は、業界中立化と市場中立化モジュールを明確な財務見識をもって取り入れた、新しい深層多要素モデルを開発する。
実世界の株式市場データによるテストは、我々の深層多要素モデルの有効性を示している。
論文 参考訳(メタデータ) (2022-10-22T14:47:11Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
強化学習アルゴリズムは成功するが、エージェントと環境の間の大量の相互作用を必要とする。
本稿では,教師なしモデルベースRLを用いてエージェントを事前学習する手法を提案する。
我々はReal-Word RLベンチマークにおいて、適応中の環境摂動に対する抵抗性を示唆し、堅牢な性能を示す。
論文 参考訳(メタデータ) (2022-09-24T14:22:29Z) - An intelligent algorithmic trading based on a risk-return reinforcement
learning algorithm [0.0]
本稿では,改良された深部強化学習アルゴリズムを用いたポートフォリオ最適化モデルを提案する。
提案アルゴリズムはアクター・クリティカル・アーキテクチャに基づいており、クリティカル・ネットワークの主な課題はポートフォリオ累積リターンの分布を学習することである。
Ape-xと呼ばれるマルチプロセスを用いて、深層強化学習訓練の高速化を図る。
論文 参考訳(メタデータ) (2022-08-23T03:20:06Z) - Deep Reinforcement Learning and Convex Mean-Variance Optimisation for
Portfolio Management [0.0]
強化学習(RL)法は明示的な予測に頼らず、多段階決定プロセスに適している。
総合的な傾向の異なる経済の3つの市場で実験が行われた。
論文 参考訳(メタデータ) (2022-02-13T10:12:09Z) - Auto-Transfer: Learning to Route Transferrable Representations [77.30427535329571]
本稿では,適切なターゲット表現にソース表現をルートする方法を自動学習する,新しい対向型マルチアームバンディット手法を提案する。
最先端の知識伝達手法と比較すると,5%以上の精度向上が期待できる。
論文 参考訳(メタデータ) (2022-02-02T13:09:27Z) - Factor Representation and Decision Making in Stock Markets Using Deep
Reinforcement Learning [1.242591017155152]
我々は,S&P500株のポートフォリオ選択を定期的に行うために,直接強化学習を用いたポートフォリオ管理システムを構築している。
その結果、市場条件と最適ポートフォリオ割り当ての効果的な学習は、平均的市場を著しく上回る可能性が示唆された。
論文 参考訳(メタデータ) (2021-08-03T21:31:46Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning(FL)は、分散クライアント間で効果的な機械学習モデルをトレーニングするための有望なツールとなっている。
しかし、低品質のモデルは信頼性の低いクライアントによってアグリゲータサーバにアップロードすることができ、劣化やトレーニングの崩壊につながる。
クライアントの信頼できない振る舞いをモデル化し、このようなセキュリティリスクを軽減するための防御メカニズムを提案する。
論文 参考訳(メタデータ) (2021-05-10T08:02:27Z) - A Design Space Study for LISTA and Beyond [79.76740811464597]
近年では、反復アルゴリズムの展開による問題固有のディープネットワーク構築に大きな成功を収めている。
本稿では,深層ネットワークにおける設計アプローチとしてのアンローリングの役割について再考する。
スパースリカバリのためのlistaを代表例として,未ロールモデルに対する設計空間調査を初めて実施した。
論文 参考訳(メタデータ) (2021-04-08T23:01:52Z) - MAPS: Multi-agent Reinforcement Learning-based Portfolio Management
System [23.657021288146158]
マルチエージェント強化学習に基づくポートフォリオ管理システム(MAPS)を提案する。
MAPSは、各エージェントが独立した「投資者」であり、独自のポートフォリオを作成する協調システムである。
米国の12年間の市場データによる実験の結果、MAPSはシャープ比でベースラインの大半を上回っている。
論文 参考訳(メタデータ) (2020-07-10T14:08:12Z) - Deep Stock Predictions [58.720142291102135]
本稿では,Long Short Term Memory (LSTM) ニューラルネットワークを用いてポートフォリオ最適化を行うトレーディング戦略の設計について考察する。
次に、LSTMのトレーニングに使用する損失関数をカスタマイズし、利益を上げる。
カスタマイズされた損失関数を持つLSTMモデルは、ARIMAのような回帰ベースライン上でのトレーニングボットの性能を向上させる。
論文 参考訳(メタデータ) (2020-06-08T23:37:47Z) - Incentive Mechanism Design for Resource Sharing in Collaborative Edge
Learning [106.51930957941433]
5GとBeyondネットワークでは、人工知能のアプリケーションがますます普及すると予想されている。
これは、現在のクラウド中心のモデルトレーニングアプローチから、エッジラーニングとして知られるエッジコンピューティングベースの協調学習スキームへのパラダイムシフトを必要とする。
論文 参考訳(メタデータ) (2020-05-31T12:45:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。