論文の概要: Machine Learning-Based Estimation Of Wave Direction For Unmanned Surface Vehicles
- arxiv url: http://arxiv.org/abs/2412.16205v2
- Date: Wed, 12 Feb 2025 09:48:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:46:29.117113
- Title: Machine Learning-Based Estimation Of Wave Direction For Unmanned Surface Vehicles
- Title(参考訳): 機械学習による無人表面車両の波動方向推定
- Authors: Manele Ait Habouche, Mickaël Kerboeuf, Goulven Guillou, Jean-Philippe Babau,
- Abstract要約: 本稿では,USVから収集したセンサデータを用いて,波動方向の予測を行う機械学習手法を提案する。
実験の結果,LSTMモデルが時間的依存を学習し,正確な予測を行う能力を示した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Unmanned Surface Vehicles (USVs) have become critical tools for marine exploration, environmental monitoring, and autonomous navigation. Accurate estimation of wave direction is essential for improving USV navigation and ensuring operational safety, but traditional methods often suffer from high costs and limited spatial resolution. This paper proposes a machine learning-based approach leveraging LSTM (Long Short-Term Memory) networks to predict wave direction using sensor data collected from USVs. Experimental results show the capability of the LSTM model to learn temporal dependencies and provide accurate predictions, outperforming simpler baselines.
- Abstract(参考訳): 無人表面車両(USV)は海洋探査、環境モニタリング、自律航法において重要なツールとなっている。
波動方向の正確な推定は、USVナビゲーションの改善と運用上の安全性確保に不可欠であるが、従来の手法では高コストで空間分解能が制限されることが多い。
本稿では,LSTM(Long Short-Term Memory)ネットワークを利用した機械学習による,USVから収集したセンサデータを用いた波動方向の予測手法を提案する。
実験の結果、LSTMモデルが時間的依存を学習し、正確な予測を提供する能力を示し、より単純なベースラインよりも優れていた。
関連論文リスト
- MPVO: Motion-Prior based Visual Odometry for PointGoal Navigation [3.9974562667271507]
視覚計測(VO)は,室内環境におけるエンボディエージェントの正確なポイントゴールナビゲーションを可能にするために不可欠である。
近年の深層学習VO法は, 頑健な性能を示すが, トレーニング中のサンプル不効率に悩まされている。
エージェントが環境をナビゲートしている間に利用可能な動作先に基づいて、ロバストでサンプル効率の良いVOパイプラインを提案する。
論文 参考訳(メタデータ) (2024-11-07T15:36:49Z) - Scale-Translation Equivariant Network for Oceanic Internal Solitary Wave Localization [7.444865250744234]
内部孤立波(英:internal Solitary wave、ISW)は、内部の海洋でしばしば観測される重力波である。
光リモートセンシング画像における雲のカバーは、地表面の情報を可変的に曖昧にし、ぼやけたり、表面の観察を欠いたりする。
本稿では,ISWを自動検出するアルゴリズムを用いた機械学習ソリューションを提案する。
論文 参考訳(メタデータ) (2024-06-18T21:09:56Z) - A Bionic Data-driven Approach for Long-distance Underwater Navigation with Anomaly Resistance [59.21686775951903]
様々な動物が環境の手がかりを使って正確なナビゲーションをしている。
動物航法にインスパイアされたこの研究は、長距離水中航法のためのバイオニックでデータ駆動のアプローチを提案する。
提案手法では,GPSシステムや地理地図を必要とせず,測地データを用いてナビゲーションを行う。
論文 参考訳(メタデータ) (2024-02-06T13:20:56Z) - Angle Robustness Unmanned Aerial Vehicle Navigation in GNSS-Denied
Scenarios [66.05091704671503]
本稿では、ポイントツーポイントナビゲーションタスクにおける飛行偏差に対処する新しい角度ナビゲーションパラダイムを提案する。
また、Adaptive Feature Enhance Module、Cross-knowledge Attention-guided Module、Robust Task-oriented Head Moduleを含むモデルを提案する。
論文 参考訳(メタデータ) (2024-02-04T08:41:20Z) - Towards Improved Prediction of Ship Performance: A Comparative Analysis
on In-service Ship Monitoring Data for Modeling the Speed-Power Relation [0.0]
我々は、データ駆動機械学習アルゴリズムの精度を、船舶の性能を評価する従来の方法と比較する。
以上の結果から,ニューラルネットワークが基本原理に従って確立された半経験式よりも優れていたことが示唆された。
これらの結果から,データ駆動型アルゴリズムは実用アプリケーションにおける船体性能の予測に有効である可能性が示唆された。
論文 参考訳(メタデータ) (2022-12-26T09:39:33Z) - Time-to-Green predictions for fully-actuated signal control systems with
supervised learning [56.66331540599836]
本稿では,集約信号とループ検出データを用いた時系列予測フレームワークを提案する。
我々は、最先端の機械学習モデルを用いて、将来の信号位相の持続時間を予測する。
スイスのチューリッヒの信号制御システムから得られた経験的データに基づいて、機械学習モデルが従来の予測手法より優れていることを示す。
論文 参考訳(メタデータ) (2022-08-24T07:50:43Z) - CTIN: Robust Contextual Transformer Network for Inertial Navigation [20.86392550313961]
Inertial Navigation(CTIN)のための頑健なCon Transformerベースのネットワークを提案し,速度と軌道を正確に予測する。
CTINは非常に堅牢で、最先端のモデルよりも優れています。
論文 参考訳(メタデータ) (2021-12-03T19:57:34Z) - Efficient and Robust LiDAR-Based End-to-End Navigation [132.52661670308606]
我々は,LiDARをベースとした効率的なエンドツーエンドナビゲーションフレームワークを提案する。
本稿では,スパース畳み込みカーネル最適化とハードウェア対応モデル設計に基づくFast-LiDARNetを提案する。
次に,単一の前方通過のみから予測の不確かさを直接推定するハイブリッド・エビデンシャル・フュージョンを提案する。
論文 参考訳(メタデータ) (2021-05-20T17:52:37Z) - Uncertainty-aware Remaining Useful Life predictor [57.74855412811814]
有効寿命 (Remaining Useful Life, RUL) とは、特定の産業資産の運用期間を推定する問題である。
本研究では,Deep Gaussian Processes (DGPs) を,前述の制限に対する解決策と捉える。
アルゴリズムの性能はNASAの航空機エンジン用N-CMAPSSデータセットで評価される。
論文 参考訳(メタデータ) (2021-04-08T08:50:44Z) - Vision-Based Autonomous Drone Control using Supervised Learning in
Simulation [0.0]
室内環境におけるMAVの自律的ナビゲーションと着陸にSupervised Learningを用いた視覚に基づく制御手法を提案する。
我々は、低解像度画像とセンサー入力を高レベル制御コマンドにマッピングする畳み込みニューラルネットワーク(CNN)を訓練した。
我々のアプローチは、類似の強化学習アプローチよりも短いトレーニング時間を必要としており、匹敵するSupervised Learningアプローチが直面する手動データ収集の限界を克服する可能性がある。
論文 参考訳(メタデータ) (2020-09-09T13:45:41Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
慣性測定ユニット(IMU)は小型で安価でエネルギー効率が良く、スマートデバイスや移動ロボットに広く使われている。
正確で信頼性の高い歩行者ナビゲーションをサポートするために慣性データをエクスプロイトすることは、新しいインターネット・オブ・シングス・アプリケーションやサービスにとって重要なコンポーネントである。
我々は、深層学習に基づく慣性ナビゲーション研究のための最初の公開データセットであるOxIOD(OxIOD)を提示、リリースする。
論文 参考訳(メタデータ) (2020-01-13T04:41:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。