論文の概要: Bayesian Critique-Tune-Based Reinforcement Learning with Attention-Based Adaptive Pressure for Multi-Intersection Traffic Signal Control
- arxiv url: http://arxiv.org/abs/2412.16225v1
- Date: Wed, 18 Dec 2024 14:33:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 16:00:06.368235
- Title: Bayesian Critique-Tune-Based Reinforcement Learning with Attention-Based Adaptive Pressure for Multi-Intersection Traffic Signal Control
- Title(参考訳): 多区間信号制御のためのアテンションベース適応圧力を用いたベイズ批判-チューンに基づく強化学習
- Authors: Wenchang Duan, Zhenguo Gao. Jinguo Xian,
- Abstract要約: 本稿では,多区間信号制御のためのBCT-APRL(Bayesian Critique-Tune-based Reinforcement Learning)を提案する。
BCT-APRLは、7つの実世界のデータセットにおける最先端の手法よりも優れている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Adaptive Traffic Signal Control (ATSC) system is a critical component of intelligent transportation, with the capability to significantly alleviate urban traffic congestion. Although reinforcement learning (RL)-based methods have demonstrated promising performance in achieving ATSC, existing methods find it prone to convergence to local optima. Consequently, this paper proposes a novel Bayesian Critique-Tune-Based Reinforcement Learning with Attention-Based Adaptive Pressure (BCT-APRL) for multi-intersection signal control. In BCT-APRL, the Critique-Tune (CT) framework, a two-layer Bayesian structure is designed to refine the RL policies. Specifically, the Bayesian inference-based Critique layer provides effective evaluations of the credibility of policies; the Bayesian decision-based Tune layer fine-tunes policies by minimizing the posterior risks when the evaluations are negative. Furthermore, an attention-based Adaptive Pressure (AP) is designed to specify the traffic movement representation as an effective and efficient pressure of vehicle queues in the traffic network. Achieving enhances the reasonableness of RL policies. Extensive experiments conducted with a simulator across a range of intersection layouts show that BCT-APRL is superior to other state-of-the-art methods in seven real-world datasets. Codes are open-sourced.
- Abstract(参考訳): アダプティブトラフィック信号制御(ATSC)システムは、都市交通渋滞を著しく緩和する能力を持つインテリジェントトランスポートの重要な構成要素である。
強化学習(RL)に基づく手法は,ATSCの実現に有望な性能を示したが,既存の手法では局所最適に収束する傾向にある。
そこで本稿では,多区間信号制御のためのBCT-APRL(Bayesian Critique-Tune-based Reinforcement Learning)を提案する。
BCT-APRL(Crytique-Tune(CT)フレームワーク)では、RLポリシーを洗練させるために2層ベイズ構造が設計されている。
具体的には、ベイズ的推論に基づく批判層は、政策の信頼性を効果的に評価し、ベイズ的決定に基づくチューン層は、評価が負の場合に後部リスクを最小限に抑える。
さらに,アダプティブ・プレッシャ(AP)は,交通ネットワーク内の車両待ち行列の効率よく効率的な圧力として,交通移動の表現を規定するように設計されている。
達成はRLポリシーの合理性を高める。
BCT-APRLは、7つの実世界のデータセットにおける他の最先端手法よりも優れていることを示す。
コードはオープンソースである。
関連論文リスト
- A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-11T16:42:29Z) - Data-efficient Deep Reinforcement Learning for Vehicle Trajectory
Control [6.144517901919656]
強化学習(RL)は、古典的なアプローチよりも優れた制御性能を達成することを約束する。
SAC(Soft-actor critic)のような標準RLアプローチでは、大量のトレーニングデータを収集する必要がある。
近年開発されたディープRL法を車両軌道制御に適用した。
論文 参考訳(メタデータ) (2023-11-30T09:38:59Z) - Learning to Sail Dynamic Networks: The MARLIN Reinforcement Learning
Framework for Congestion Control in Tactical Environments [53.08686495706487]
本稿では, 正確な並列化可能なエミュレーション環境を利用して, 戦術ネットワークの環境を再現するRLフレームワークを提案する。
衛星通信(SATCOM)とUHFワイドバンド(UHF)の無線リンク間のボトルネックリンク遷移を再現した条件下で、MARLINエージェントを訓練することにより、我々のRL学習フレームワークを評価する。
論文 参考訳(メタデータ) (2023-06-27T16:15:15Z) - Lyapunov Function Consistent Adaptive Network Signal Control with Back
Pressure and Reinforcement Learning [9.797994846439527]
本研究では、それぞれ特定のリャプノフ関数を定義するリアプノフ制御理論を用いた統一的なフレームワークを提案する。
Lyapunov理論の知見に基づいて、この研究は強化学習(Reinforcement Learning, RL)に基づくネットワーク信号制御のための報酬関数を設計する。
提案アルゴリズムは, 純旅客車流および貨物を含む異種交通流下での従来のRL法およびRL法と比較した。
論文 参考訳(メタデータ) (2022-10-06T00:22:02Z) - Benchmarking Safe Deep Reinforcement Learning in Aquatic Navigation [78.17108227614928]
本研究では,水文ナビゲーションに着目した安全強化学習のためのベンチマーク環境を提案する。
価値に基づく政策段階の深層強化学習(DRL)について考察する。
また,学習したモデルの振る舞いを所望の特性の集合上で検証する検証戦略を提案する。
論文 参考訳(メタデータ) (2021-12-16T16:53:56Z) - Efficient Pressure: Improving efficiency for signalized intersections [24.917612761503996]
交通信号制御(TSC)の問題を解決するために,強化学習(RL)が注目されている。
既存のRLベースの手法は、計算資源の面でコスト効率が良くなく、従来の手法よりも堅牢ではないため、ほとんどデプロイされない。
我々は,RTLに基づくアプローチに基づいて,トレーニングを減らし,複雑さを低減したTSCの適応制御系を構築する方法を示す。
論文 参考訳(メタデータ) (2021-12-04T13:49:58Z) - A Deep Reinforcement Learning Approach for Traffic Signal Control
Optimization [14.455497228170646]
非効率な信号制御手法は、交通渋滞やエネルギー浪費などの多くの問題を引き起こす可能性がある。
本稿では,アクター・クリティカル・ポリシー・グラデーション・アルゴリズムを拡張し,マルチエージェント・ディープ・決定性ポリシー・グラデーション(MADDPG)法を提案する。
論文 参考訳(メタデータ) (2021-07-13T14:11:04Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
交通信号制御は、交差点を横断する交通信号を調整し、地域や都市の交通効率を向上させることを目的としている。
近年,交通信号制御に深部強化学習(RL)を適用し,各信号がエージェントとみなされる有望な性能を示した。
本稿では,近隣情報を考慮した各交差点の分散化政策を潜時的に学習するメタ変動固有モチベーション(MetaVIM)RL法を提案する。
論文 参考訳(メタデータ) (2021-01-04T03:06:08Z) - Vehicular Cooperative Perception Through Action Branching and Federated
Reinforcement Learning [101.64598586454571]
強化学習に基づく車両関連、リソースブロック(RB)割り当て、協調認識メッセージ(CPM)のコンテンツ選択を可能にする新しいフレームワークが提案されている。
車両全体のトレーニングプロセスをスピードアップするために、フェデレーションRLアプローチが導入されます。
その結果、フェデレーションRLはトレーニングプロセスを改善し、非フェデレーションアプローチと同じ時間内により良いポリシーを達成できることが示された。
論文 参考訳(メタデータ) (2020-12-07T02:09:15Z) - Reinforcement Learning for Low-Thrust Trajectory Design of
Interplanetary Missions [77.34726150561087]
本稿では, 惑星間軌道のロバスト設計における強化学習の適用について検討する。
最先端アルゴリズムのオープンソース実装が採用されている。
その結果得られた誘導制御ネットワークは、堅牢な名目的軌道と関連する閉ループ誘導法の両方を提供する。
論文 参考訳(メタデータ) (2020-08-19T15:22:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。