論文の概要: Is AI Robust Enough for Scientific Research?
- arxiv url: http://arxiv.org/abs/2412.16234v1
- Date: Thu, 19 Dec 2024 03:10:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:56:10.992902
- Title: Is AI Robust Enough for Scientific Research?
- Title(参考訳): AIのロバストは科学研究に十分か?
- Authors: Jun-Jie Zhang, Jiahao Song, Xiu-Cheng Wang, Fu-Peng Li, Zehan Liu, Jian-Nan Chen, Haoning Dang, Shiyao Wang, Yiyan Zhang, Jianhui Xu, Chunxiang Shi, Fei Wang, Long-Gang Pang, Nan Cheng, Weiwei Zhang, Duo Zhang, Deyu Meng,
- Abstract要約: ニューラルネットワークは、微小摂動に対する高い感受性を示し、出力から大きく逸脱する。
この啓示は、重要な科学的計算にニューラルネットワークに依存するという隠れたリスクを露呈する。
- 参考スコア(独自算出の注目度): 38.08169100055211
- License:
- Abstract: We uncover a phenomenon largely overlooked by the scientific community utilizing AI: neural networks exhibit high susceptibility to minute perturbations, resulting in significant deviations in their outputs. Through an analysis of five diverse application areas -- weather forecasting, chemical energy and force calculations, fluid dynamics, quantum chromodynamics, and wireless communication -- we demonstrate that this vulnerability is a broad and general characteristic of AI systems. This revelation exposes a hidden risk in relying on neural networks for essential scientific computations, calling further studies on their reliability and security.
- Abstract(参考訳): ニューラルネットワークは、微小な摂動に対する高い感受性を示し、その結果、その出力にかなりの偏りをもたらす。
天気予報、化学エネルギーと力計算、流体力学、量子色力学、無線通信の5つの分野の分析を通じて、この脆弱性がAIシステムの広範かつ一般的な特徴であることを実証した。
この啓示は、ニューラルネットワークを重要な科学的計算に頼ることによる隠れたリスクを明らかにし、信頼性とセキュリティに関するさらなる研究を呼び起こす。
関連論文リスト
- Constraint-based Adversarial Example Synthesis [1.2548803788632799]
この研究は、ニューラルネットワークを実装するPythonプログラムをテストするための特殊なテクニックであるConcolic Testingの強化に焦点を当てている。
拡張ツールであるPyCTは、浮動小数点演算やアクティベーション関数計算など、幅広いニューラルネットワーク操作に対応している。
論文 参考訳(メタデータ) (2024-06-03T11:35:26Z) - Artificial Intelligence for Complex Network: Potential, Methodology and
Application [23.710627896950438]
複雑なネットワーク科学は、実際のネットワークの基盤となる統計力学、構造、力学の理解を大幅に強化した。
人工知能(AI)技術の出現は、複雑なネットワーク科学研究の新しい時代を告げている。
この調査は、複雑なネットワーク研究の難題を克服する上で、AIの潜在的な利点を体系的に解決することを目的としている。
論文 参考訳(メタデータ) (2024-02-23T09:06:36Z) - A Review of Neuroscience-Inspired Machine Learning [58.72729525961739]
バイオプルーシブル・クレジット・アサインメントは、事実上あらゆる学習条件と互換性があり、エネルギー効率が高い。
本稿では,人工ニューラルネットワークにおける信用代入の生体評価可能なルールをモデル化する,いくつかの重要なアルゴリズムについて検討する。
我々は,このようなアルゴリズムを実用アプリケーションでより有用にするためには,今後の課題に対処する必要があることを論じる。
論文 参考訳(メタデータ) (2024-02-16T18:05:09Z) - Quantum-Inspired Analysis of Neural Network Vulnerabilities: The Role of
Conjugate Variables in System Attacks [54.565579874913816]
ニューラルネットワークは、敵の攻撃として現れる小さな非ランダムな摂動に固有の脆弱性を示す。
この機構と量子物理学の不確実性原理の間に数学的に一致し、予想外の学際性に光を当てる。
論文 参考訳(メタデータ) (2024-02-16T02:11:27Z) - Causal Reasoning: Charting a Revolutionary Course for Next-Generation
AI-Native Wireless Networks [63.246437631458356]
次世代無線ネットワーク(例:6G)は人工知能(AI)ネイティブである。
本稿では、新たな因果推論分野を基盤として、AIネイティブな無線ネットワークを構築するための新しいフレームワークを紹介する。
因果発見と表現によって対処できる無線ネットワークの課題をいくつか挙げる。
論文 参考訳(メタデータ) (2023-09-23T00:05:39Z) - Artificial Intelligence for Science in Quantum, Atomistic, and Continuum Systems [268.585904751315]
科学のためのAI(AI4Science)として知られる新しい研究領域
領域は、物理世界(波動関数と電子密度)、原子(分子、タンパク質、物質、相互作用)、マクロ(流体、気候、地下)まで理解することを目的としている。
主要な課題は、物理第一原理、特に対称性を深層学習法によって自然システムで捉える方法である。
論文 参考訳(メタデータ) (2023-07-17T12:14:14Z) - Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks in
Scientific Computing [0.0]
コンピュータパワーの最近の進歩は、機械学習とディープラーニングを使って科学計算を進歩させることを可能にした。
固有のアーキテクチャのため、従来のニューラルネットワークは、データがスパースである場合には、うまくトレーニングされ、スコープ化できない。
ニューラルネットワークは、物理的駆動あるいは知識に基づく制約を消化するための強力な基盤を提供する。
論文 参考訳(メタデータ) (2022-11-14T15:44:07Z) - Adversarial Robustness of Deep Neural Networks: A Survey from a Formal
Verification Perspective [7.821877331499578]
悪意ある操作を受けた入力を扱う場合、ニューラルネットワークの信頼性を懸念する敵対的堅牢性は、セキュリティと機械学習において最もホットなトピックの1つである。
我々は、ニューラルネットワークの対向的堅牢性検証における既存の文献を調査し、機械学習、セキュリティ、ソフトウェアエンジニアリングドメインにわたる39の多様な研究成果を収集する。
我々は、このトピックを包括的に理解するために、形式的検証の観点から分類を提供する。
論文 参考訳(メタデータ) (2022-06-24T11:53:12Z) - Explainable artificial intelligence for mechanics: physics-informing
neural networks for constitutive models [0.0]
メカニクスにおいて、物理インフォームドニューラルネットワークの新しい活発な分野は、機械的知識に基づいてディープニューラルネットワークを設計することによって、この欠点を緩和しようとする。
本論文では,機械データに訓練されたニューラルネットワークを後述する物理形成型アプローチへの第一歩を提案する。
これにより、主成分分析はRNNの細胞状態における分散表現をデコレーションし、既知の基本関数との比較を可能にする。
論文 参考訳(メタデータ) (2021-04-20T18:38:52Z) - Artificial Neural Variability for Deep Learning: On Overfitting, Noise
Memorization, and Catastrophic Forgetting [135.0863818867184]
人工ニューラルネットワーク(ANV)は、ニューラルネットワークが自然のニューラルネットワークからいくつかの利点を学ぶのに役立つ。
ANVは、トレーニングデータと学習モデルの間の相互情報の暗黙の正則化として機能する。
過度にフィットし、ノイズの記憶をラベル付けし、無視できるコストで破滅的な忘れを効果的に軽減することができる。
論文 参考訳(メタデータ) (2020-11-12T06:06:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。