Weak ergodicity breaking from supersymmetry in a fermionic kinetically constrained model
- URL: http://arxiv.org/abs/2412.16287v1
- Date: Fri, 20 Dec 2024 19:00:01 GMT
- Title: Weak ergodicity breaking from supersymmetry in a fermionic kinetically constrained model
- Authors: Wouter Buijsman, Pieter W. Claeys,
- Abstract summary: Supersymmetry provides a natural playground for the construction of kinetically constrained lattice fermion models.<n>Supersymmetry directly implies that the dynamics exhibit periodic revivals for specific initial states.<n>We draw a further parallel by uncovering quantum many-body scar-like eigenstates obeying sub-thermal entanglement scaling at energies given by (plus or minus) square roots of integers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Supersymmetry provides a natural playground for the construction of kinetically constrained lattice fermion models showing weak ergodicity breaking. The supersymmetric algebra naturally induces non-ergodic dynamics, as we illustrate here by introducing a fermionic equivalent of the PXP model with an adjustable chemical potential. This model is closely related to the $\mathcal{N} = 2$ supersymmetric $M_1$ model. Supersymmetry directly implies that the dynamics exhibit periodic revivals for specific initial states, including the $\mathbb{Z}_2$-ordered (every second site occupied) product state. These dynamics are reminiscent to those of the PXP model, a paradigmatic toy model in the field of quantum many-body scars. We draw a further parallel by uncovering quantum many-body scar-like eigenstates obeying sub-thermal entanglement scaling at energies given by (plus or minus) square roots of integers and relate these to special eigenstates of the $M_1$ model.
Related papers
- Fragmentation, Zero Modes, and Collective Bound States in Constrained Models [0.0]
This work focuses on the properties of the zero mode subspace in quantum kinetically constrained models with a $U(1)$ particle-conservation symmetry.
We observe that the simultaneous presence of constraints and chiral symmetry generally leads to a parametric increase in the number of zero modes.
We introduce the notion of collective bound states and argue that the degenerate zero mode subspace plays a central role.
arXiv Detail & Related papers (2025-04-24T14:49:16Z) - Symmetries, Conservation Laws and Entanglement in Non-Hermitian Fermionic Lattices [37.69303106863453]
Non-Hermitian quantum many-body systems feature steady-state entanglement transitions driven by unitary dynamics and dissipation.
We show that the steady state is obtained by filling single-particle right eigenstates with the largest imaginary part of the eigenvalue.
We illustrate these principles in the Hatano-Nelson model with periodic boundary conditions and the non-Hermitian Su-Schrieffer-Heeger model.
arXiv Detail & Related papers (2025-04-11T14:06:05Z) - Controlling Symmetries and Quantum Criticality in the Anisotropic Coupled-Top Model [32.553027955412986]
We investigate the anisotropic coupled-top model, which describes the interactions between two large spins along both $x-$ and $y-$directions.
We can manipulate the system's symmetry, inducing either discrete $Z$ or continuous U(1) symmetry.
The framework provides an ideal platform for experimentally controlling symmetries and investigating associated physical phenomena.
arXiv Detail & Related papers (2025-02-13T15:14:29Z) - Exactly solvable models for fermionic symmetry-enriched topological phases and fermionic 't Hooft anomaly [33.49184078479579]
The interplay between symmetry and topological properties plays a very important role in modern physics.
How to realize all these fermionic SET (fSET) phases in lattice models remains to be a difficult open problem.
arXiv Detail & Related papers (2024-10-24T19:52:27Z) - Entanglement dynamics in the many-body Hatano-Nelson model [0.0]
The entanglement dynamics in a non-Hermitian quantum system is studied numerically and analyzed from the viewpoint of quasiparticle picture.
As opposed to an assertion of previous studies, the entanglement dynamics in this non-Hermitian quantum system is very different from the one in its Hermitian counterpart.
arXiv Detail & Related papers (2023-08-06T10:12:41Z) - Emergence of non-Abelian SU(2) invariance in Abelian frustrated
fermionic ladders [37.69303106863453]
We consider a system of interacting spinless fermions on a two-leg triangular ladder with $pi/2$ magnetic flux per triangular plaquette.
Microscopically, the system exhibits a U(1) symmetry corresponding to the conservation of total fermionic charge, and a discrete $mathbbZ$ symmetry.
At the intersection of the three phases, the system features a critical point with an emergent SU(2) symmetry.
arXiv Detail & Related papers (2023-05-11T15:57:27Z) - Entangling dynamics from effective rotor/spin-wave separation in
U(1)-symmetric quantum spin models [0.0]
Non-equilibrium dynamics of quantum spin models is a most challenging topic, due to the exponentiality of Hilbert space.
A particularly important class of evolutions is the one governed by U(1) symmetric Hamiltonians.
We show that the dynamics of the OAT model can be closely reproduced by systems with power-lawdecaying interactions.
arXiv Detail & Related papers (2023-02-18T09:37:45Z) - Intrinsically Interacting Higher-Order Topological Superconductors [19.52773844535185]
We propose a minimal interacting lattice model for two-dimensional class-$D$ higher-order topological superconductors.
A Lieb-Schultz-Mattis-type constraint is proposed and applied to guide our lattice model construction.
arXiv Detail & Related papers (2022-12-26T04:48:28Z) - Engineering imaginary stark ladder in a dissipative lattice: passive
$\mathcal{PT}$ symmetry, K symmetry and localized damping [6.192861457571956]
We study an imaginary stark ladder model and propose a realization of the model in a dissipative chain with linearly increasing site-dependent dissipation strength.
We unveil that the dynamical evolution of single particle correlation function is governed by the Hamiltonian of the imaginary stark ladder model.
arXiv Detail & Related papers (2022-10-17T03:43:38Z) - Fermion and meson mass generation in non-Hermitian Nambu--Jona-Lasinio
models [77.34726150561087]
We investigate the effects of non-Hermiticity on interacting fermionic systems.
We do this by including non-Hermitian bilinear terms into the 3+1 dimensional Nambu--Jona-Lasinio (NJL) model.
arXiv Detail & Related papers (2021-02-02T13:56:11Z) - Gauge Invariant and Anyonic Symmetric Transformer and RNN Quantum States for Quantum Lattice Models [16.987004075528606]
We develop a general approach to constructing gauge invariant or anyonic symmetric autoregressive neural network quantum states.
We prove that our methods can provide exact representation for the ground and excited states of the 2D and 3D toric codes.
We variationally optimize our symmetry incorporated autoregressive neural networks for ground states as well as real-time dynamics for a variety of models.
arXiv Detail & Related papers (2021-01-18T18:55:21Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.