論文の概要: Patherea: Cell Detection and Classification for the 2020s
- arxiv url: http://arxiv.org/abs/2412.16425v2
- Date: Wed, 16 Jul 2025 11:52:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-17 14:40:09.202039
- Title: Patherea: Cell Detection and Classification for the 2020s
- Title(参考訳): Patherea:2020年代の細胞検出と分類
- Authors: Dejan Štepec, Maja Jerše, Snežana Đokić, Jera Jeruc, Nina Zidar, Danijel Skočaj,
- Abstract要約: Pathereaは、ポイントベースの細胞検出と分類のための統合されたフレームワークである。
本手法は, 中間表現に依存することなく, 細胞の位置やクラスを直接予測する。
Pathereaは、パブリックデータセット上で最先端のパフォーマンスを達成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present Patherea, a unified framework for point-based cell detection and classification that enables the development and fair evaluation of state-of-the-art methods. To support this, we introduce a large-scale dataset that replicates the clinical workflow for Ki-67 proliferation index estimation. Our method directly predicts cell locations and classes without relying on intermediate representations. It incorporates a hybrid Hungarian matching strategy for accurate point assignment and supports flexible backbones and training regimes, including recent pathology foundation models. Patherea achieves state-of-the-art performance on public datasets - Lizard, BRCA-M2C, and BCData - while highlighting performance saturation on these benchmarks. In contrast, our newly proposed Patherea dataset presents a significantly more challenging benchmark. Additionally, we identify and correct common errors in current evaluation protocols and provide an updated benchmarking utility for standardized assessment. The Patherea dataset and code are publicly available to facilitate further research and fair comparisons.
- Abstract(参考訳): 本稿では,最先端の手法の開発と公正な評価を可能にする,ポイントベース細胞検出と分類のための統合フレームワークPathereaを提案する。
そこで本研究では,Ki-67増殖指数推定のための臨床ワークフローを再現した大規模データセットを提案する。
本手法は, 中間表現に依存することなく, 細胞の位置やクラスを直接予測する。
正確なポイント割り当てのためのハイブリッドハンガリーマッチング戦略を取り入れ、最近の病理基盤モデルを含む柔軟なバックボーンとトレーニング体制をサポートする。
Pathereaは、パブリックデータセット(Lizard、BRCA-M2C、BCData)で最先端のパフォーマンスを実現し、これらのベンチマークのパフォーマンス飽和を強調している。
対照的に、新たに提案したPathereaデータセットは、はるかに難しいベンチマークを示している。
さらに、現在の評価プロトコルにおける共通エラーを特定し、修正し、標準化された評価のためのベンチマークユーティリティを更新する。
Pathereaデータセットとコードは、さらなる研究と公正な比較を促進するために公開されている。
関連論文リスト
- Clustering by Nonparametric Smoothing [6.635604919499181]
クラスタリング問題の新たな定式化は、タスクを推定問題として表現するものである。
提案手法は、任意の明示的なモデリング仮定を回避し、非パラメトリックな平滑化の柔軟な推定ポテンシャルを利用する。
提案手法の強い性能を示すために,公開データセットの大規模なコレクションに関する実験が用いられている。
論文 参考訳(メタデータ) (2025-03-12T07:44:11Z) - Revisiting BPR: A Replicability Study of a Common Recommender System Baseline [78.00363373925758]
我々は,BPRモデルの特徴を考察し,その性能への影響を示し,オープンソースのBPR実装について検討する。
分析の結果,これらの実装とオリジナルのBPR論文の矛盾が明らかとなり,特定の実装に対して最大50%の性能低下がみられた。
BPRモデルは、トップnのレコメンデーションタスクにおける最先端メソッドに近いパフォーマンスレベルを達成でき、特定のデータセット上でもパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2024-09-21T18:39:53Z) - Rethinking the Effectiveness of Graph Classification Datasets in Benchmarks for Assessing GNNs [7.407592553310068]
本稿では,単純な手法とGNN間の性能差を調べるための,公正なベンチマークフレームワークに基づく経験的プロトコルを提案する。
また,データセットの複雑性とモデル性能を両立させることにより,データセットの有効性を定量化する新しい指標を提案する。
我々の発見は、ベンチマークデータセットの現在の理解に光を当て、新しいプラットフォームは、グラフ分類ベンチマークの将来的な進化を後押しする可能性がある。
論文 参考訳(メタデータ) (2024-07-06T08:33:23Z) - Proper Dataset Valuation by Pointwise Mutual Information [26.693741797887643]
データキュレーション手法を評価するための情報理論フレームワークを提案する。
我々は,データセットの品質を,真のモデルパラメータに関する情報性の観点から定義する。
得られたデータとテストデータとの間のシャノン相互情報によりブラックウェル順序を決定することができることを示す。
論文 参考訳(メタデータ) (2024-05-28T15:04:17Z) - Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
自己組織化マップ(SOM)におけるトポロジカルプロジェクションに基づく半教師付き学習手法を提案する。
提案手法は,まずラベル付きデータ上でSOMを訓練し,最小限のラベル付きデータポイントをキーベストマッチングユニット(BMU)に割り当てる。
提案した最小教師付きモデルが従来の回帰手法を大幅に上回ることを示す。
論文 参考訳(メタデータ) (2024-01-12T22:51:48Z) - When is Off-Policy Evaluation (Reward Modeling) Useful in Contextual Bandits? A Data-Centric Perspective [64.73162159837956]
ログ化されたデータセットだけで仮説的ターゲットポリシーの価値を評価することは重要だが、難しい。
データ中心のフレームワークであるDataCOPEを提案する。
医療データセットを用いたログ化された文脈的帯域設定におけるDataCOPEの実証分析により、機械学習と人間の専門家ポリシーの両方を評価する能力が確認された。
論文 参考訳(メタデータ) (2023-11-23T17:13:37Z) - Sample Complexity of Preference-Based Nonparametric Off-Policy
Evaluation with Deep Networks [58.469818546042696]
我々は、OPEのサンプル効率を人間の好みで研究し、その統計的保証を確立する。
ReLUネットワークのサイズを適切に選択することにより、マルコフ決定過程において任意の低次元多様体構造を活用できることが示される。
論文 参考訳(メタデータ) (2023-10-16T16:27:06Z) - Open-Set Domain Adaptation with Visual-Language Foundation Models [51.49854335102149]
非教師なしドメイン適応(UDA)は、ソースドメインからラベルのないデータを持つターゲットドメインへの知識の転送に非常に効果的であることが証明されている。
オープンセットドメイン適応(ODA)は、トレーニングフェーズ中にこれらのクラスを識別する潜在的なソリューションとして登場した。
論文 参考訳(メタデータ) (2023-07-30T11:38:46Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
基礎モデルを用いた最先端UniDA手法の実証的研究を行った。
CLIPモデルからターゲット知識を抽出するためのパラメータフリーな手法であるtextitCLIP 蒸留を導入する。
単純な手法ではあるが、ほとんどのベンチマークタスクでは従来の手法よりも優れている。
論文 参考訳(メタデータ) (2023-05-18T16:28:29Z) - Going beyond research datasets: Novel intent discovery in the industry
setting [60.90117614762879]
本稿では,大規模なeコマースプラットフォームに展開する意図発見パイプラインを改善する手法を提案する。
ドメイン内データに基づく事前学習型言語モデルの利点を示す。
また,クラスタリングタスクの微調整中に,実生活データセットの会話構造(質問と回答)を利用するための最善の方法も考案した。
論文 参考訳(メタデータ) (2023-05-09T14:21:29Z) - A Meta-Learning Approach to Predicting Performance and Data Requirements [163.4412093478316]
本稿では,モデルが目標性能に達するために必要なサンプル数を推定する手法を提案する。
モデル性能を推定するデファクト原理であるパワー法則が,小さなデータセットを使用する場合の誤差が大きいことが判明した。
本稿では,2つのデータを異なる方法で処理するPPL法について紹介する。
論文 参考訳(メタデータ) (2023-03-02T21:48:22Z) - RGB-D-Based Categorical Object Pose and Shape Estimation: Methods,
Datasets, and Evaluation [5.71097144710995]
この研究は、メソッド、データセット、評価プロトコルの観点から、この分野の概要を提供する。
我々は、メトリクスやデータセットを含む主要な評価プロトコルを批判的に見ていく。
我々は、新しいメトリクスセットを提案し、Redwoodデータセットに新しいアノテーションを提供し、公正な比較で最先端の手法を評価する。
論文 参考訳(メタデータ) (2023-01-19T15:59:10Z) - Image Classification with Small Datasets: Overview and Benchmark [0.0]
私たちは過去の研究を体系的に組織化し、結合し、現在分断され散らばっているコミュニティを統合する。
本稿では,アプローチの客観的比較を可能にする共通ベンチマークを提案する。
このベンチマークを用いて、標準のクロスエントロピーベースラインと、有名な会場で2017年から2021年にかけて発行された10の既存手法を再評価する。
論文 参考訳(メタデータ) (2022-12-23T17:11:16Z) - Comparison of Model-Free and Model-Based Learning-Informed Planning for
PointGoal Navigation [10.797100163772482]
我々は,最先端のDeep Reinforcement Learningに基づくアプローチと,ポイントゴールナビゲーション問題に対する部分観測可能なマルコフ決定プロセス(POMDP)の定式化を比較した。
私たちは、SOTA DD-PPOアプローチよりも若干パフォーマンスが劣るが、データが少ないことを示しています。
論文 参考訳(メタデータ) (2022-12-17T05:23:54Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - A Recommendation Approach based on Similarity-Popularity Models of
Complex Networks [1.385805101975528]
そこで本研究では,類似性傾向モデルにより生成された複雑なネットワークをベースとした新しい推薦手法を提案する。
まず、観測されたレーティングからユーザとアイテムをノードとして持つネットワークモデルを構築し、そのモデルを用いて未知のレーティングを予測する。
提案手法は, 各種ドメインの21データセットに対して, ベースラインと最先端のレコメンデーション手法に対して, 提案手法を実装, 実験的に比較した。
論文 参考訳(メタデータ) (2022-09-29T11:00:06Z) - A Closer Look at Debiased Temporal Sentence Grounding in Videos:
Dataset, Metric, and Approach [53.727460222955266]
テンポラル・センテンス・グラウンディング・イン・ビデオ(TSGV)は、未編集のビデオに自然言語文を埋め込むことを目的としている。
最近の研究では、現在のベンチマークデータセットには明らかなモーメントアノテーションバイアスがあることが判明している。
偏りのあるデータセットによる膨らませ評価を緩和するため、基礎的リコールスコアを割引する新しい評価基準「dR@n,IoU@m」を導入する。
論文 参考訳(メタデータ) (2022-03-10T08:58:18Z) - Multi-view Data Classification with a Label-driven Auto-weighted
Strategy [32.581793437017716]
ラベルの観点から,ビューの重要性を評価するための自己重み付け戦略を提案する。
この戦略に基づいて,トランスダクティブな半教師付き自動重み付きマルチビュー分類モデルを提案する。
提案手法は,最適あるいは準最適の分類精度を最小計算コストで達成する。
論文 参考訳(メタデータ) (2022-01-03T15:27:54Z) - Deep Adversarial Domain Adaptation Based on Multi-layer Joint Kernelized
Distance [30.452492118887182]
ドメイン適応とは、ソースデータから学習したモデルを対象データに適用する学習シナリオを指す。
ソースデータとターゲットデータとの分布差は、適応性能に大きく影響する。
多層共役核距離測定値に基づく深層対向領域適応モデルを提案する。
論文 参考訳(メタデータ) (2020-10-09T02:32:48Z) - BREEDS: Benchmarks for Subpopulation Shift [98.90314444545204]
本研究では,人口変動に対するモデルのロバスト性を評価する手法を開発した。
既存のデータセットの基盤となるクラス構造を利用して、トレーニングとテストの分散を構成するデータサブポピュレーションを制御する。
この手法をImageNetデータセットに適用し、様々な粒度のサブポピュレーションシフトベンチマークスイートを作成する。
論文 参考訳(メタデータ) (2020-08-11T17:04:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。