Data-Driven Fairness Generalization for Deepfake Detection
- URL: http://arxiv.org/abs/2412.16428v2
- Date: Tue, 31 Dec 2024 07:15:01 GMT
- Title: Data-Driven Fairness Generalization for Deepfake Detection
- Authors: Uzoamaka Ezeakunne, Chrisantus Eze, Xiuwen Liu,
- Abstract summary: biases in the training data for deepfake detection can result in varying levels of performance across different demographic groups.
We propose a data-driven framework for tackling the fairness generalization problem in deepfake detection by leveraging synthetic datasets and model optimization.
- Score: 1.2221087476416053
- License:
- Abstract: Despite the progress made in deepfake detection research, recent studies have shown that biases in the training data for these detectors can result in varying levels of performance across different demographic groups, such as race and gender. These disparities can lead to certain groups being unfairly targeted or excluded. Traditional methods often rely on fair loss functions to address these issues, but they under-perform when applied to unseen datasets, hence, fairness generalization remains a challenge. In this work, we propose a data-driven framework for tackling the fairness generalization problem in deepfake detection by leveraging synthetic datasets and model optimization. Our approach focuses on generating and utilizing synthetic data to enhance fairness across diverse demographic groups. By creating a diverse set of synthetic samples that represent various demographic groups, we ensure that our model is trained on a balanced and representative dataset. This approach allows us to generalize fairness more effectively across different domains. We employ a comprehensive strategy that leverages synthetic data, a loss sharpness-aware optimization pipeline, and a multi-task learning framework to create a more equitable training environment, which helps maintain fairness across both intra-dataset and cross-dataset evaluations. Extensive experiments on benchmark deepfake detection datasets demonstrate the efficacy of our approach, surpassing state-of-the-art approaches in preserving fairness during cross-dataset evaluation. Our results highlight the potential of synthetic datasets in achieving fairness generalization, providing a robust solution for the challenges faced in deepfake detection.
Related papers
- Targeted Learning for Data Fairness [52.59573714151884]
We expand fairness inference by evaluating fairness in the data generating process itself.
We derive estimators demographic parity, equal opportunity, and conditional mutual information.
To validate our approach, we perform several simulations and apply our estimators to real data.
arXiv Detail & Related papers (2025-02-06T18:51:28Z) - Group Robust Classification Without Any Group Information [5.053622900542495]
This study contends that current bias-unsupervised approaches to group robustness continue to rely on group information to achieve optimal performance.
bias labels are still crucial for effective model selection, restricting the practicality of these methods in real-world scenarios.
We propose a revised methodology for training and validating debiased models in an entirely bias-unsupervised manner.
arXiv Detail & Related papers (2023-10-28T01:29:18Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
Imbalanced datasets are commonly observed in various real-world applications, presenting significant challenges in training classifiers.
We propose generating synthetic samples iteratively by mixing data samples from both minority and majority classes.
We demonstrate the effectiveness of our proposed framework through extensive experiments conducted on seven publicly available benchmark datasets.
arXiv Detail & Related papers (2023-08-28T18:48:34Z) - FairGen: Fair Synthetic Data Generation [0.3149883354098941]
We propose a pipeline to generate fairer synthetic data independent of the GAN architecture.
We claim that while generating synthetic data most GANs amplify bias present in the training data but by removing these bias inducing samples, GANs essentially focuses more on real informative samples.
arXiv Detail & Related papers (2022-10-24T08:13:47Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
We propose a novel scheme to Condense dataset by Aligning FEatures (CAFE)
At the heart of our approach is an effective strategy to align features from the real and synthetic data across various scales.
We validate the proposed CAFE across various datasets, and demonstrate that it generally outperforms the state of the art.
arXiv Detail & Related papers (2022-03-03T05:58:49Z) - Exploring the Efficacy of Automatically Generated Counterfactuals for
Sentiment Analysis [17.811597734603144]
We propose an approach to automatically generating counterfactual data for data augmentation and explanation.
A comprehensive evaluation on several different datasets and using a variety of state-of-the-art benchmarks demonstrate how our approach can achieve significant improvements in model performance.
arXiv Detail & Related papers (2021-06-29T10:27:01Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
We consider fairness in the integration component of data management.
We propose an approach to identify a sub-collection of features that ensure the fairness of the dataset.
arXiv Detail & Related papers (2020-06-10T20:20:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.