論文の概要: Real-time Bangla Sign Language Translator
- arxiv url: http://arxiv.org/abs/2412.16497v1
- Date: Sat, 21 Dec 2024 05:56:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 16:01:41.316170
- Title: Real-time Bangla Sign Language Translator
- Title(参考訳): リアルタイムバングラ手話翻訳装置
- Authors: Rotan Hawlader Pranto, Shahnewaz Siddique,
- Abstract要約: Bangla Sign Language Translation (BSLT)は、聴覚障害とミュートコミュニティのコミュニケーションギャップを埋めることを目的としている。
提案手法では,キーポイントの収集にMediapipe Holistic,データトレーニングにLSTMアーキテクチャ,94%の精度でリアルタイム手話検出にComputer Visionを採用している。
- 参考スコア(独自算出の注目度): 0.3222802562733786
- License:
- Abstract: The human body communicates through various meaningful gestures, with sign language using hands being a prominent example. Bangla Sign Language Translation (BSLT) aims to bridge communication gaps for the deaf and mute community. Our approach involves using Mediapipe Holistic to gather key points, LSTM architecture for data training, and Computer Vision for realtime sign language detection with an accuracy of 94%. Keywords=Recurrent Neural Network, LSTM, Computer Vision, Bangla font.
- Abstract(参考訳): 人体は様々な意味のあるジェスチャーを通してコミュニケーションし、手を用いた手話が顕著な例である。
Bangla Sign Language Translation (BSLT)は、聴覚障害とミュートコミュニティのコミュニケーションギャップを埋めることを目的としている。
提案手法では,キーポイントの収集にMediapipe Holistic,データトレーニングにLSTMアーキテクチャ,94%の精度でリアルタイム手話検出にComputer Visionを採用している。
キーワード=リカレントニューラルネットワーク、LSTM、コンピュータビジョン、バングラフォント。
関連論文リスト
- SCOPE: Sign Language Contextual Processing with Embedding from LLMs [49.5629738637893]
世界中の約7000万人の聴覚障害者が使用する手話は、視覚的および文脈的な情報を伝える視覚言語である。
視覚に基づく手話認識(SLR)と翻訳(SLT)の現在の手法は、限られたデータセットの多様性と文脈に関連のある情報の無視により、対話シーンに苦慮している。
SCOPEは、コンテキスト認識型ビジョンベースSLRおよびSLTフレームワークである。
論文 参考訳(メタデータ) (2024-09-02T08:56:12Z) - BAUST Lipi: A BdSL Dataset with Deep Learning Based Bangla Sign Language Recognition [0.5497663232622964]
聴覚障害者コミュニティとのコミュニケーションを強化するために、手話の研究が盛んである。
重要な障壁の1つは、包括的なBangla手話データセットがないことである。
18,000個の画像からなる新しいBdSLデータセットを導入し,各画像のサイズを224×224ピクセルとする。
我々は、複数の畳み込み層、アクティベーション機能、ドロップアウト技術、LSTM層を統合するハイブリッド畳み込みニューラルネットワーク(CNN)モデルを考案した。
論文 参考訳(メタデータ) (2024-08-20T03:35:42Z) - Scaling up Multimodal Pre-training for Sign Language Understanding [96.17753464544604]
手話は、難聴者コミュニティにとってコミュニケーションの主要な意味である。
難聴者と聴覚者のコミュニケーションを容易にするために,手話理解(SLU)タスクのシリーズが研究されている。
これらの課題は、多様な視点から手話のトピックを調査し、手話ビデオの効果的な表現を学ぶ上での課題を提起する。
論文 参考訳(メタデータ) (2024-08-16T06:04:25Z) - EvSign: Sign Language Recognition and Translation with Streaming Events [59.51655336911345]
イベントカメラは、動的手の動きを自然に知覚し、手話作業のための豊富な手作業の手がかりを提供する。
イベントベースSLRおよびSLTタスクのための効率的なトランスフォーマーベースフレームワークを提案する。
計算コストは0.34%に過ぎず,既存の最先端手法に対して良好に機能する。
論文 参考訳(メタデータ) (2024-07-17T14:16:35Z) - SignSpeak: Open-Source Time Series Classification for ASL Translation [0.12499537119440243]
本稿では,低コストでリアルタイムなASL-to-Speech翻訳グローブと手話パターンの学習データセットを提案する。
このデータセットを、LSTM、GRU、Transformersなどの教師付き学習モデルでベンチマークし、最高のモデルが92%の精度を達成した。
当社のオープンソースデータセット、モデル、グローブデザインは、コスト効率を維持しつつ、正確かつ効率的なASLトランスレータを提供する。
論文 参考訳(メタデータ) (2024-06-27T17:58:54Z) - Connecting the Dots: Leveraging Spatio-Temporal Graph Neural Networks
for Accurate Bangla Sign Language Recognition [2.624902795082451]
我々は,40語以上の611ビデオからなる単語レベルBandgla Sign Languageデータセット(BdSL40)を提案する。
これは単語レベルのBdSL認識に関する最初の研究であり、データセットはBangla Sign Language Dictionary (1997)を用いてインド手話(ISL)から転写された。
この研究は、BdSL、West Bengal Sign Language、ISL間の重要な語彙的および意味的類似点と、文献におけるBdSLのワードレベルデータセットの欠如を強調した。
論文 参考訳(メタデータ) (2024-01-22T18:52:51Z) - Neural Sign Actors: A diffusion model for 3D sign language production from text [51.81647203840081]
手話 (SL) は難聴者および難聴者コミュニティの主要なコミュニケーション手段である。
この研究は、現実的なニューラルサインアバターに向けて重要な一歩を踏み出し、聴覚と聴覚のコミュニティ間のコミュニケーションギャップを埋める。
論文 参考訳(メタデータ) (2023-12-05T12:04:34Z) - All You Need In Sign Language Production [50.3955314892191]
言語認識と生産のサインは、いくつかの重要な課題に対処する必要があります。
本稿では,難聴文化,難聴センター,手話の心理的視点について紹介する。
また、SLPのバックボーンアーキテクチャや手法を簡潔に紹介し、SLPの分類について提案する。
論文 参考訳(メタデータ) (2022-01-05T13:45:09Z) - Skeleton Based Sign Language Recognition Using Whole-body Keypoints [71.97020373520922]
手話は聴覚障害者や言語障害者のコミュニケーションに使用される。
また,RGB-D法と組み合わせて最先端の性能を実現することで,Skeletonに基づく音声認識が普及しつつある。
近年のボディポーズ推定用citejin 2020wholeの開発に触発されて,全身キーポイントと特徴に基づく手話認識を提案する。
論文 参考訳(メタデータ) (2021-03-16T03:38:17Z) - Novel Approach to Use HU Moments with Image Processing Techniques for
Real Time Sign Language Communication [0.0]
手話通信装置(SLC)は,手話利用者と他国との言語障壁を解決するために設計されている。
システムは選択した手話記号を84%の精度で認識できる。
論文 参考訳(メタデータ) (2020-07-20T03:10:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。