論文の概要: Batch Selection for Multi-Label Classification Guided by Uncertainty and Dynamic Label Correlations
- arxiv url: http://arxiv.org/abs/2412.16521v1
- Date: Sat, 21 Dec 2024 07:49:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 16:00:46.978105
- Title: Batch Selection for Multi-Label Classification Guided by Uncertainty and Dynamic Label Correlations
- Title(参考訳): 不確かさと動的ラベル相関によるマルチラベル分類のためのバッチ選択
- Authors: Ao Zhou, Bin Liu, Jin Wang, Grigorios Tsoumakas,
- Abstract要約: 本研究では,不確実性に基づくマルチラベルバッチ選択アルゴリズムを提案する。
逐次予測と現在の出力の信頼度の違いを考慮し、各ラベルの不確実性を評価する。
実験により,本手法が性能向上に有効であることを実証した。
- 参考スコア(独自算出の注目度): 9.360376286221943
- License:
- Abstract: The accuracy of deep neural networks is significantly influenced by the effectiveness of mini-batch construction during training. In single-label scenarios, such as binary and multi-class classification tasks, it has been demonstrated that batch selection algorithms preferring samples with higher uncertainty achieve better performance than difficulty-based methods. Although there are two batch selection methods tailored for multi-label data, none of them leverage important uncertainty information. Adapting the concept of uncertainty to multi-label data is not a trivial task, since there are two issues that should be tackled. First, traditional variance or entropy-based uncertainty measures ignore fluctuations of predictions within sliding windows and the importance of the current model state. Second, existing multi-label methods do not explicitly exploit the label correlations, particularly the uncertainty-based label correlations that evolve during the training process. In this paper, we propose an uncertainty-based multi-label batch selection algorithm. It assesses uncertainty for each label by considering differences between successive predictions and the confidence of current outputs, and further leverages dynamic uncertainty-based label correlations to emphasize instances whose uncertainty is synergistically expressed across multiple labels. Empirical studies demonstrate the effectiveness of our method in improving the performance and accelerating the convergence of various multi-label deep learning models.
- Abstract(参考訳): 深層ニューラルネットワークの精度は、トレーニング中のミニバッチ構築の有効性に大きく影響される。
バイナリやマルチクラスの分類タスクのようなシングルラベルのシナリオでは、高い不確実性を持つサンプルを選別するバッチ選択アルゴリズムが難易度に基づく手法よりも優れた性能を実現することが示されている。
マルチラベルデータに適した2つのバッチ選択方法があるが、いずれも重要な不確実性情報を活用するものではない。
マルチラベルデータへの不確実性の概念の適用は、対処すべき2つの問題があるため、簡単な作業ではない。
第一に、従来の分散またはエントロピーに基づく不確実性尺度は、すべり窓内の予測の変動と現在のモデル状態の重要性を無視する。
第二に、既存のマルチラベル法はラベル相関、特にトレーニングプロセス中に進化する不確実性に基づくラベル相関を明示的に利用しない。
本稿では,不確実性に基づくマルチラベルバッチ選択アルゴリズムを提案する。
逐次予測と現在の出力の信頼性の違いを考慮して各ラベルの不確実性を評価し、さらに動的不確実性に基づくラベル相関を利用して複数のラベル間で相乗的に表現されるインスタンスを強調する。
実験により,本手法の有効性を実証し,様々な多ラベル深層学習モデルの収束を促進させる。
関連論文リスト
- Dual-Decoupling Learning and Metric-Adaptive Thresholding for Semi-Supervised Multi-Label Learning [81.83013974171364]
半教師付きマルチラベル学習(SSMLL)は、正確なマルチラベルアノテーションを収集するコストを削減するために、ラベルのないデータを活用する強力なフレームワークである。
半教師付き学習とは異なり、インスタンスに含まれる複数のセマンティクスのため、SSMLLの擬似ラベルとして最も確率の高いラベルを選択することはできない。
本稿では,高品質な擬似ラベルを生成するための二重パースペクティブ手法を提案する。
論文 参考訳(メタデータ) (2024-07-26T09:33:53Z) - Dynamic Correlation Learning and Regularization for Multi-Label Confidence Calibration [60.95748658638956]
本稿では,多ラベルシナリオにおける信頼度を適切に評価することを目的としたマルチラベル信頼性タスクを提案する。
既存のシングルラベルキャリブレーション手法では、セマンティックな混乱に対処するために欠かせないカテゴリ相関を考慮できない。
本稿では,多粒度セマンティック相関を利用した動的相関学習と正規化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-09T13:26:21Z) - Multi-Label Noise Transition Matrix Estimation with Label Correlations:
Theory and Algorithm [73.94839250910977]
ノイズの多いマルチラベル学習は、大規模な正確なラベルの収集によって生じる課題により、注目を集めている。
遷移行列の導入は、マルチラベルノイズをモデル化し、統計的に一貫したアルゴリズムの開発に役立つ。
そこで本稿では, アンカーポイントを必要とせずに, ラベル相関を利用した新しい推定器を提案する。
論文 参考訳(メタデータ) (2023-09-22T08:35:38Z) - Class-Distribution-Aware Pseudo Labeling for Semi-Supervised Multi-Label
Learning [97.88458953075205]
Pseudo-labelingは、ラベルなしデータを利用するための人気で効果的なアプローチとして登場した。
本稿では,クラスアウェアの擬似ラベル処理を行うCAP(Class-Aware Pseudo-Labeling)という新しい手法を提案する。
論文 参考訳(メタデータ) (2023-05-04T12:52:18Z) - Exploiting Completeness and Uncertainty of Pseudo Labels for Weakly
Supervised Video Anomaly Detection [149.23913018423022]
弱教師付きビデオ異常検出は、ビデオレベルのラベルのみを用いて、ビデオ内の異常事象を特定することを目的としている。
2段階の自己学習法は擬似ラベルの自己生成によって著しく改善されている。
本稿では,自己学習のための完全性と不確実性を利用した強化フレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-08T05:53:53Z) - Going Beyond One-Hot Encoding in Classification: Can Human Uncertainty
Improve Model Performance? [14.610038284393166]
ラベルの不確実性は、分散ラベルを介してトレーニングプロセスに明示的に組み込まれていることを示す。
ラベルの不確実性の取り込みは、モデルが見つからないデータをより一般化し、モデルの性能を向上させるのに役立ちます。
既存のキャリブレーション法と同様に、分布ラベルはより良いキャリブレーションの確率をもたらし、それによってより確実で信頼できる予測が得られる。
論文 参考訳(メタデータ) (2022-05-30T17:19:11Z) - Multi-class Probabilistic Bounds for Self-learning [13.875239300089861]
Pseudo-labelingはエラーを起こしやすいため、ラベルなしのトレーニングデータにノイズのあるラベルを追加するリスクがある。
本稿では,多クラス分類シナリオにおける自己学習を部分的にラベル付きデータで分析する確率的枠組みを提案する。
論文 参考訳(メタデータ) (2021-09-29T13:57:37Z) - Incorporating Label Uncertainty in Understanding Adversarial Robustness [17.65850501514483]
最先端モデルによって誘導される誤差領域は、ランダムに選択されたサブセットよりもラベルの不確実性が高い傾向を示す。
この観測は,ラベルの不確実性を考慮した濃度推定アルゴリズムの適用を動機付けている。
論文 参考訳(メタデータ) (2021-07-07T14:26:57Z) - Minimax Active Learning [61.729667575374606]
アクティブラーニングは、人間のアノテーションによってラベル付けされる最も代表的なサンプルをクエリすることによって、ラベル効率の高いアルゴリズムを開発することを目指している。
現在のアクティブラーニング技術は、最も不確実なサンプルを選択するためにモデルの不確実性に頼るか、クラスタリングを使うか、最も多様なラベルのないサンプルを選択するために再構築する。
我々は,不確実性と多様性を両立させる半教師付きミニマックスエントロピーに基づく能動学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-12-18T19:03:40Z) - Mitigating Class Boundary Label Uncertainty to Reduce Both Model Bias
and Variance [4.563176550691304]
トレーニングデータラベルの不正確性と不確実性に対処する新しい手法について検討する。
本手法は,トレーニングセットのポイントワイドラベルの不確かさを推定することにより,バイアスと分散の両面を低減できる。
論文 参考訳(メタデータ) (2020-02-23T18:24:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。