FairDD: Enhancing Fairness with domain-incremental learning in dermatological disease diagnosis
- URL: http://arxiv.org/abs/2412.16542v1
- Date: Sat, 21 Dec 2024 08:57:00 GMT
- Title: FairDD: Enhancing Fairness with domain-incremental learning in dermatological disease diagnosis
- Authors: Yiqin Luo, Tianlong Gu,
- Abstract summary: This study aims to achieve a better trade-off between accuracy and fairness in dermatological diagnostic models.
We propose a novel fair dermatological diagnosis network, named FairDD, which leverages domain incremental learning to balance the learning of different groups.
Our proposed method excels in both fairness criteria and the trade-off between fairness and performance.
- Score: 3.0485081384226733
- License:
- Abstract: With the rapid advancement of deep learning technologies, artificial intelligence has become increasingly prevalent in the research and application of dermatological disease diagnosis. However, this data-driven approach often faces issues related to decision bias. Existing fairness enhancement techniques typically come at a substantial cost to accuracy. This study aims to achieve a better trade-off between accuracy and fairness in dermatological diagnostic models. To this end, we propose a novel fair dermatological diagnosis network, named FairDD, which leverages domain incremental learning to balance the learning of different groups by being sensitive to changes in data distribution. Additionally, we incorporate the mixup data augmentation technique and supervised contrastive learning to enhance the network's robustness and generalization. Experimental validation on two dermatological datasets demonstrates that our proposed method excels in both fairness criteria and the trade-off between fairness and performance.
Related papers
- Addressing Challenges in Data Quality and Model Generalization for Malaria Detection [0.0]
Malaria remains a significant global health burden, particularly in resource-limited regions where timely and accurate diagnosis is critical to effective treatment and control.
Deep Learning (DL) has emerged as a transformative tool for automating malaria detection and it offers high accuracy and scalability.
However, the effectiveness of these models is constrained by challenges in data quality and model generalization.
This article provides a comprehensive analysis of these challenges and their implications for malaria detection performance.
arXiv Detail & Related papers (2024-12-31T14:25:55Z) - Biasing & Debiasing based Approach Towards Fair Knowledge Transfer for Equitable Skin Analysis [16.638722872021095]
We propose a two-biased teachers' based approach to transfer fair knowledge into the student network.
Our approach mitigates biases present in the student network without harming its predictive accuracy.
arXiv Detail & Related papers (2024-05-16T17:02:23Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - Generative models improve fairness of medical classifiers under
distribution shifts [49.10233060774818]
We show that learning realistic augmentations automatically from data is possible in a label-efficient manner using generative models.
We demonstrate that these learned augmentations can surpass ones by making models more robust and statistically fair in- and out-of-distribution.
arXiv Detail & Related papers (2023-04-18T18:15:38Z) - FairAdaBN: Mitigating unfairness with adaptive batch normalization and
its application to dermatological disease classification [14.589159162086926]
We propose FairAdaBN, which makes batch normalization adaptive to sensitive attribute.
We propose a new metric, named Fairness-Accuracy Trade-off Efficiency (FATE), to compute normalized fairness improvement over accuracy drop.
Experiments on two dermatological datasets show that our proposed method outperforms other methods on fairness criteria and FATE.
arXiv Detail & Related papers (2023-03-15T02:22:07Z) - Achieving Fairness in Dermatological Disease Diagnosis through Automatic
Weight Adjusting Federated Learning and Personalization [15.276768990910337]
Dermatological diseases pose a major threat to the global health, affecting almost one-third of the world's population.
This paper proposes a fairness-aware federated learning framework for dermatological disease diagnosis.
Experiments indicate that our proposed framework effectively improves both fairness and accuracy compared with the state-of-the-art.
arXiv Detail & Related papers (2022-08-23T20:44:09Z) - SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for
Lightweight Skin Lesion Classification Using Dermoscopic Images [62.60956024215873]
Skin cancer is one of the most common types of malignancy, affecting a large population and causing a heavy economic burden worldwide.
Most studies in skin cancer detection keep pursuing high prediction accuracies without considering the limitation of computing resources on portable devices.
This study specifically proposes a novel method, termed SSD-KD, that unifies diverse knowledge into a generic KD framework for skin diseases classification.
arXiv Detail & Related papers (2022-03-22T06:54:29Z) - Technical Challenges for Training Fair Neural Networks [62.466658247995404]
We conduct experiments on both facial recognition and automated medical diagnosis datasets using state-of-the-art architectures.
We observe that large models overfit to fairness objectives, and produce a range of unintended and undesirable consequences.
arXiv Detail & Related papers (2021-02-12T20:36:45Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.