論文の概要: RHFedMTL: Resource-Aware Hierarchical Federated Multi-Task Learning
- arxiv url: http://arxiv.org/abs/2306.00675v1
- Date: Thu, 1 Jun 2023 13:49:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-02 15:54:32.936926
- Title: RHFedMTL: Resource-Aware Hierarchical Federated Multi-Task Learning
- Title(参考訳): rhfedmtl: リソース対応階層型フェデレーションマルチタスク学習
- Authors: Xingfu Yi, Rongpeng Li, Chenghui Peng, Fei Wang, Jianjun Wu, and
Zhifeng Zhao
- Abstract要約: フェデレーション学習は、セキュリティを備えた大規模な分散ノード上でAIを可能にする効果的な方法である。
複数の基地局(BS)と端末をまたいだマルチタスク学習を維持しながら、プライバシを確保することは困難である。
本稿では, セルラーワークの自然雲-BS-末端階層に着想を得て, 資源を考慮した階層型MTL (RHFedMTL) ソリューションを提案する。
- 参考スコア(独自算出の注目度): 11.329273673732217
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid development of artificial intelligence (AI) over massive
applications including Internet-of-things on cellular network raises the
concern of technical challenges such as privacy, heterogeneity and resource
efficiency.
Federated learning is an effective way to enable AI over massive distributed
nodes with security.
However, conventional works mostly focus on learning a single global model
for a unique task across the network, and are generally less competent to
handle multi-task learning (MTL) scenarios with stragglers at the expense of
acceptable computation and communication cost. Meanwhile, it is challenging to
ensure the privacy while maintain a coupled multi-task learning across multiple
base stations (BSs) and terminals. In this paper, inspired by the natural
cloud-BS-terminal hierarchy of cellular works, we provide a viable
resource-aware hierarchical federated MTL (RHFedMTL) solution to meet the
heterogeneity of tasks, by solving different tasks within the BSs and
aggregating the multi-task result in the cloud without compromising the
privacy. Specifically, a primal-dual method has been leveraged to effectively
transform the coupled MTL into some local optimization sub-problems within BSs.
Furthermore, compared with existing methods to reduce resource cost by simply
changing the aggregation frequency,
we dive into the intricate relationship between resource consumption and
learning accuracy, and develop a resource-aware learning strategy for local
terminals and BSs to meet the resource budget. Extensive simulation results
demonstrate the effectiveness and superiority of RHFedMTL in terms of improving
the learning accuracy and boosting the convergence rate.
- Abstract(参考訳): セルラーネットワーク上のインターネットを含む大規模なアプリケーションに対する人工知能(AI)の急速な発展は、プライバシや異質性、リソース効率といった技術的課題の懸念を提起する。
フェデレーション学習は、セキュリティを備えた大規模な分散ノード上でAIを可能にする効果的な方法である。
しかし、従来の研究は、ネットワーク全体にわたるユニークなタスクのための単一のグローバルモデルを学ぶことに集中しており、一般に、許容可能な計算と通信コストを犠牲にして、ストラグラーを用いたマルチタスク学習(MTL)シナリオを扱う能力は低い。
一方、複数の基地局(BS)と端末をまたいだマルチタスク学習を維持しながら、プライバシを確保することは困難である。
本稿では、BS内のさまざまなタスクを解決し、マルチタスクの結果をクラウドに集約することにより、プライバシを損なうことなく、タスクの不均一性を満たすための、リソースを意識した階層型MTL(RHFedMTL)ソリューションを提供する。
具体的には,MTLをBS内の局所最適化サブプロブレムに効果的に変換するために,原始双対法が活用されている。
さらに,資源の集約頻度を単純に変更して資源コストを削減する既存の手法と比較し,資源消費と学習精度の複雑な関係を考察し,資源予算を満たすためのローカル端末とbssのための資源認識学習戦略を開発した。
広範なシミュレーション結果から,rhfedmtlの有効性と,学習精度の向上と収束率の向上が示された。
関連論文リスト
- A Comprehensive Survey on Joint Resource Allocation Strategies in Federated Edge Learning [9.806901443019008]
Federated Edge Learning (FEL)は、分散環境でのモデルトレーニングを可能にすると同時に、ユーザデータの物理的分離を利用することで、ユーザのプライバシを確保する。
IoT(Internet of Things)やSmart Earthといった複雑なアプリケーションシナリオの開発により、従来のリソース割り当てスキームは、これらの増大する計算および通信要求を効果的にサポートすることができなくなった。
本稿では,複数の資源需要が増大する中で,計算と通信の多面的課題を体系的に解決する。
論文 参考訳(メタデータ) (2024-10-10T13:02:00Z) - Edge Intelligence Optimization for Large Language Model Inference with Batching and Quantization [20.631476379056892]
大規模言語モデル(LLM)がこの運動の最前線にある。
LLMはクラウドホスティングを必要とするため、プライバシやレイテンシ、使用制限に関する問題が発生する。
LLM推論に適したエッジインテリジェンス最適化問題を提案する。
論文 参考訳(メタデータ) (2024-05-12T02:38:58Z) - Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
統計的に同一性を持つ無線ネットワークにおける自己回帰的マルコフ過程のサンプリングとリモート推定の課題に対処する。
我々のゴールは、分散化されたスケーラブルサンプリングおよび送信ポリシーを用いて、時間平均推定誤差と/または情報の年齢を最小化することである。
論文 参考訳(メタデータ) (2024-04-04T06:24:11Z) - REFT: Resource-Efficient Federated Training Framework for Heterogeneous
and Resource-Constrained Environments [2.117841684082203]
分散システムでは、フェデレートラーニング(FL)が重要な役割を果たす。
FLは、機械学習のプライバシ強化サブドメインとして出現する。
我々は「不均一・資源制約環境のための資源効率の良いフェデレーション・トレーニング・フレームワーク」を提案する。
論文 参考訳(メタデータ) (2023-08-25T20:33:30Z) - Serverless Federated AUPRC Optimization for Multi-Party Collaborative
Imbalanced Data Mining [119.89373423433804]
有効指標としてAUPRC(Area Under Precision-Recall)を導入した。
サーバーレスのマルチパーティ共同トレーニングは、サーバーノードのボトルネックを避けることで通信コストを削減できる。
本稿では,AUPRCを直接最適化する ServerLess biAsed sTochastic gradiEnt (SLATE) アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-08-06T06:51:32Z) - Fast Context Adaptation in Cost-Aware Continual Learning [10.515324071327903]
5GとBeyondネットワークは、より複雑な学習エージェントを必要とし、学習プロセス自体が、コミュニケーションや計算リソースのためにユーザと競合することになるかもしれない。
一方、学習プロセスは、効率的な戦略に迅速に収束するためのリソースを必要とし、一方、学習プロセスは、ユーザのデータプレーンから可能な限り少ないリソースを取らずに、ユーザのリソースを損なわないように、効率的でなければならない。
本稿では,データプレーンに割り当てられたリソースと学習用に確保されたリソースのバランスをとるための動的戦略を提案する。
論文 参考訳(メタデータ) (2023-06-06T17:46:48Z) - The Cost of Learning: Efficiency vs. Efficacy of Learning-Based RRM for
6G [10.28841351455586]
深層強化学習(DRL)は、複雑なネットワークにおける効率的な資源管理戦略を自動学習するための貴重なソリューションとなっている。
多くのシナリオでは、学習タスクはクラウドで実行され、経験サンプルはエッジノードまたはユーザによって直接生成される。
これにより、効果的な戦略に向けて収束をスピードアップする必要性と、学習サンプルの送信にリソースの割り当てが必要となることの間に摩擦が生じます。
本稿では,学習とデータプレーン間の動的バランス戦略を提案する。これにより,集中型学習エージェントは,効率的な資源配分戦略に迅速に収束することができる。
論文 参考訳(メタデータ) (2022-11-30T11:26:01Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
複数のエージェントが無線ネットワーク上で協調できるコラボレーティブディープ強化学習(CDRL)アルゴリズムは有望なアプローチである。
本稿では,リソース制約のある無線セルネットワーク上で,意味的にリンクされたDRLタスクを持つ未学習エージェントのグループを効率的に協調させる,新しい意味認識型CDRL手法を提案する。
論文 参考訳(メタデータ) (2021-11-23T18:24:47Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
協調学習技術のパラダイムとしてのフェデレートラーニング(FL)は研究の注目を集めている。
無線システム上での高速応答および高精度FLスキームの検証が重要である。
提案する通信効率のよいフェデレーション学習フレームワークは,強い線形速度で収束することを示す。
論文 参考訳(メタデータ) (2021-10-22T13:25:57Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - A Machine Learning Approach for Task and Resource Allocation in Mobile
Edge Computing Based Networks [108.57859531628264]
無線ネットワークにおいて,共同作業,スペクトル,送信電力配分問題について検討する。
提案アルゴリズムは、標準Q-ラーニングアルゴリズムと比較して、収束に必要なイテレーション数と全ユーザの最大遅延を最大18%、11.1%削減することができる。
論文 参考訳(メタデータ) (2020-07-20T13:46:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。