A Meta-Learning Approach to Bayesian Causal Discovery
- URL: http://arxiv.org/abs/2412.16577v1
- Date: Sat, 21 Dec 2024 10:52:56 GMT
- Title: A Meta-Learning Approach to Bayesian Causal Discovery
- Authors: Anish Dhir, Matthew Ashman, James Requeima, Mark van der Wilk,
- Abstract summary: Uncertainty over causal structures, such as those obtained from a Bayesian posterior, is often necessary for downstream tasks.
Recent works have used meta-learning to view the problem of estimating the maximum a-posteriori causal graph as supervised learning.
We propose a Bayesian meta learning model that allows for sampling causal structures from the posterior and encodes these key properties.
- Score: 15.017003416900836
- License:
- Abstract: Discovering a unique causal structure is difficult due to both inherent identifiability issues, and the consequences of finite data. As such, uncertainty over causal structures, such as those obtained from a Bayesian posterior, are often necessary for downstream tasks. Finding an accurate approximation to this posterior is challenging, due to the large number of possible causal graphs, as well as the difficulty in the subproblem of finding posteriors over the functional relationships of the causal edges. Recent works have used meta-learning to view the problem of estimating the maximum a-posteriori causal graph as supervised learning. Yet, these methods are limited when estimating the full posterior as they fail to encode key properties of the posterior, such as correlation between edges and permutation equivariance with respect to nodes. Further, these methods also cannot reliably sample from the posterior over causal structures. To address these limitations, we propose a Bayesian meta learning model that allows for sampling causal structures from the posterior and encodes these key properties. We compare our meta-Bayesian causal discovery against existing Bayesian causal discovery methods, demonstrating the advantages of directly learning a posterior over causal structure.
Related papers
- Scalable Differentiable Causal Discovery in the Presence of Latent Confounders with Skeleton Posterior (Extended Version) [44.54523003453584]
Differentiable causal discovery has made significant advancements in the learning of directed acyclic graphs.
Existing differentiable MAG learning algorithms have been limited to small datasets and failed to scale to larger ones.
We propose SPOT (Skeleton Posterior-guided OpTimization), a two-phase framework that harnesses skeleton posterior for differentiable causal discovery in the presence of latent confounders.
arXiv Detail & Related papers (2024-06-15T07:40:36Z) - Effective Bayesian Causal Inference via Structural Marginalisation and Autoregressive Orders [16.682775063684907]
We decompose the structure learning problem into inferring causal order and a parent set for each variable given a causal order.
Our method yields state-of-the-art in structure learning on simulated non-linear additive noise benchmarks with scale-free and Erdos-Renyi graph structures.
arXiv Detail & Related papers (2024-02-22T18:39:24Z) - BaCaDI: Bayesian Causal Discovery with Unknown Interventions [118.93754590721173]
BaCaDI operates in the continuous space of latent probabilistic representations of both causal structures and interventions.
In experiments on synthetic causal discovery tasks and simulated gene-expression data, BaCaDI outperforms related methods in identifying causal structures and intervention targets.
arXiv Detail & Related papers (2022-06-03T16:25:48Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures [132.74509389517203]
We introduce a parametric variational family modelled by an autoregressive distribution over the space of discrete DAGs.
In experiments, we demonstrate that the proposed variational posterior is able to provide a good approximation of the true posterior.
arXiv Detail & Related papers (2021-06-14T17:52:49Z) - Deconfounded Score Method: Scoring DAGs with Dense Unobserved
Confounding [101.35070661471124]
We show that unobserved confounding leaves a characteristic footprint in the observed data distribution that allows for disentangling spurious and causal effects.
We propose an adjusted score-based causal discovery algorithm that may be implemented with general-purpose solvers and scales to high-dimensional problems.
arXiv Detail & Related papers (2021-03-28T11:07:59Z) - Causal Expectation-Maximisation [70.45873402967297]
We show that causal inference is NP-hard even in models characterised by polytree-shaped graphs.
We introduce the causal EM algorithm to reconstruct the uncertainty about the latent variables from data about categorical manifest variables.
We argue that there appears to be an unnoticed limitation to the trending idea that counterfactual bounds can often be computed without knowledge of the structural equations.
arXiv Detail & Related papers (2020-11-04T10:25:13Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
Causal inferences can be obtained by standard algorithms for the updating of credal nets.
This contribution should be regarded as a systematic approach to represent structural causal models by credal networks.
Experiments show that approximate algorithms for credal networks can immediately be used to do causal inference in real-size problems.
arXiv Detail & Related papers (2020-08-02T11:19:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.