論文の概要: AIGCodeSet: A New Annotated Dataset for AI Generated Code Detection
- arxiv url: http://arxiv.org/abs/2412.16594v1
- Date: Sat, 21 Dec 2024 11:53:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 16:01:28.286988
- Title: AIGCodeSet: A New Annotated Dataset for AI Generated Code Detection
- Title(参考訳): AIGCodeSet:AI生成コード検出のための新しいアノテーション付きデータセット
- Authors: Basak Demirok, Mucahid Kutlu,
- Abstract要約: AIGCodeSetは、特にPythonプログラミング言語向けのAI生成コード検出タスクのためのデータセットである。
我々は,CodeLlama 34B,Codestral 22B,Gemini 1.5 Flashモデルを3つのアプローチで生成する。
AIGCodeSetは2,828のAI生成と4,755の人間のコードスニペットで構成されている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: With the rapid advancement of LLM models, they have become widely useful in various fields. While these AI systems can be used for code generation, significantly simplifying and accelerating the tasks of developers, their use for students to do assignments has raised ethical questions in the field of education. In this context, determining the author of a particular code becomes important. In this study, we introduce AIGCodeSet, a dataset for AI-generated code detection tasks, specifically for the Python programming language. We obtain the problem descriptions and human-written codes from the CodeNet dataset. Using the problem descriptions, we generate AI-written codes with CodeLlama 34B, Codestral 22B, and Gemini 1.5 Flash models in three approaches: i) generating code from the problem description alone, ii) generating code using the description along with human-written source code containing runtime errors, and iii) generating code using the problem description and human-written code that resulted in wrong answers. Lastly, we conducted a post-processing step to eliminate LLM output irrelevant to code snippets. Overall, AIGCodeSet consists of 2,828 AI-generated and 4,755 human-written code snippets. We share our code with the research community to support studies on this important topic and provide performance results for baseline AI-generated code detection methods.
- Abstract(参考訳): LLMモデルの急速な進歩により、様々な分野で広く利用されている。
これらのAIシステムは、コード生成に利用でき、開発者のタスクを著しく単純化し、加速することができるが、学生が課題を行うために使うことは、教育の分野で倫理的な問題を引き起こしている。
この文脈では、特定のコードの作者を決定することが重要になる。
本研究では,AI生成したコード検出タスク,特にPython言語のためのデータセットであるAICodeSetを紹介する。
CodeNetデータセットから問題記述と人文コードを得る。
問題記述を用いて、3つのアプローチでCodeLlama 34B、Codestral 22B、Gemini 1.5 FlashモデルでAIで書かれたコードを生成する。
一 問題説明だけでコードを作成すること。
二 実行時エラーを含む人書きのソースコードとともに記述を用いてコードを生成すること。
三 問題記述及び誤答を生んだ人書きコードを用いてコードを作成すること。
最後に,コードスニペットとは無関係にLLM出力を除去するために,後処理を行った。
AIGCodeSetは2,828のAI生成と4,755の人間のコードスニペットで構成されている。
我々は、この重要なトピックの研究を支援し、ベースラインAI生成コード検出方法のパフォーマンス結果を提供するために、研究コミュニティとコードを共有します。
関連論文リスト
- No Man is an Island: Towards Fully Automatic Programming by Code Search, Code Generation and Program Repair [9.562123938545522]
ツールネームは、様々なコード検索、生成、修復ツールを統合することができ、これら3つの研究領域を初めて組み合わせることができる。
例えば、CodeLlamaは62.53%の改善で267のプログラミング問題を解決するのに役立ちます。
論文 参考訳(メタデータ) (2024-09-05T06:24:29Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - VersiCode: Towards Version-controllable Code Generation [58.82709231906735]
大規模言語モデル(LLM)は、コード生成において大きな進歩を遂げていますが、既存の研究は、ソフトウェア開発の動的な性質を説明できません。
バージョン別コード補完(VSCC)とバージョン別コードマイグレーション(VACM)の2つの新しいタスクを提案する。
VersiCodeについて広範な評価を行い、バージョン管理可能なコード生成が確かに重要な課題であることを示した。
論文 参考訳(メタデータ) (2024-06-11T16:15:06Z) - Uncovering LLM-Generated Code: A Zero-Shot Synthetic Code Detector via Code Rewriting [78.48355455324688]
原符号とLLM書き換え版との類似性に基づく新しいゼロショット合成符号検出器を提案する。
以上の結果から,既存のSOTA合成コンテンツ検出装置よりも顕著な改善が得られた。
論文 参考訳(メタデータ) (2024-05-25T08:57:28Z) - CodeIP: A Grammar-Guided Multi-Bit Watermark for Large Language Models of Code [56.019447113206006]
大規模言語モデル(LLM)はコード生成において顕著な進歩を遂げた。
CodeIPは、新しいマルチビット透かし技術で、出所の詳細を保存するために追加情報を埋め込む。
5つのプログラミング言語にまたがる実世界のデータセットで実施された実験は、CodeIPの有効性を実証している。
論文 参考訳(メタデータ) (2024-04-24T04:25:04Z) - Bugs in Large Language Models Generated Code: An Empirical Study [12.625305075672456]
コード用の大規模言語モデル(LLM)が最近注目を集めている。
人間書きのコードと同様、LLM生成コードはバグを起こしやすい。
本稿では,3つのLLMを用いて生成されたコードから収集した333個のバグのサンプルについて検討する。
論文 参考訳(メタデータ) (2024-03-13T20:12:01Z) - SparseCoder: Identifier-Aware Sparse Transformer for File-Level Code
Summarization [51.67317895094664]
本稿では,大規模なソースコードプロジェクトの理解と維持を支援するファイルレベルのコード要約について検討する。
長いコードシーケンスを効果的に処理するための識別子対応スパース変換器であるSparseCoderを提案する。
論文 参考訳(メタデータ) (2024-01-26T09:23:27Z) - Assessing AI Detectors in Identifying AI-Generated Code: Implications
for Education [8.592066814291819]
本稿では,AIGC検出器による検出を回避しようとする試みについて,LLMを実証的に検討する。
これは、異なる変種を使用して与えられた質問に応答してコードを生成することで達成される。
以上の結果から,既存のAIGCインテグレータは,人間の書き起こしたコードとAI生成したコードとの区別が不十分であることが示された。
論文 参考訳(メタデータ) (2024-01-08T05:53:52Z) - A^3-CodGen: A Repository-Level Code Generation Framework for Code Reuse with Local-Aware, Global-Aware, and Third-Party-Library-Aware [13.27883339389175]
本稿では,A3-CodGenと呼ばれる新しいコード生成フレームワークを提案する。
その結果、A3-CodGenフレームワークを採用することで、コードリポジトリ情報をLLMに抽出、ヒューズ、フィードし、より正確で、効率的で、再利用性の高いコードを生成します。
論文 参考訳(メタデータ) (2023-12-10T05:36:06Z) - CodeT5+: Open Code Large Language Models for Code Understanding and
Generation [72.1638273937025]
大きな言語モデル (LLM) は膨大なソースコードで事前訓練されており、コードインテリジェンスにおいて顕著な進歩を遂げている。
CodeT5+は、コンポーネントモジュールを柔軟に組み合わせて、幅広い下流のコードタスクに適合させることができるコードのためのエンコーダ-デコーダLLMのファミリーである。
我々は、ゼロショット、微調整、命令調整を含む20以上のコード関連ベンチマークでCodeT5+を広範囲に評価した。
論文 参考訳(メタデータ) (2023-05-13T14:23:07Z) - Chatbots As Fluent Polyglots: Revisiting Breakthrough Code Snippets [0.0]
この研究は、AI駆動のコードアシスタントを使用して、現代技術を形成する影響力のあるコンピュータコードの選択を分析する。
この研究の最初の貢献は、過去50年で最も重要なコードの進歩の半分を調査することであった。
論文 参考訳(メタデータ) (2023-01-05T23:17:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。