論文の概要: Adversarial Attack Against Images Classification based on Generative Adversarial Networks
- arxiv url: http://arxiv.org/abs/2412.16662v1
- Date: Sat, 21 Dec 2024 15:23:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 16:00:26.356168
- Title: Adversarial Attack Against Images Classification based on Generative Adversarial Networks
- Title(参考訳): 生成的敵対ネットワークに基づく画像分類に対する敵対的攻撃
- Authors: Yahe Yang,
- Abstract要約: 画像分類システムに対するアドリアック攻撃は、機械学習分野において常に重要な問題であった。
生成的敵ネットワークの普及に伴い、フェイク画像技術の誤用によりセキュリティ上の問題が相次いだ。
本研究は, 画像分類システムの弱点を把握し, 対人攻撃能力を向上させることを目的とした, 新たな対人攻撃手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Adversarial attacks on image classification systems have always been an important problem in the field of machine learning, and generative adversarial networks (GANs), as popular models in the field of image generation, have been widely used in various novel scenarios due to their powerful generative capabilities. However, with the popularity of generative adversarial networks, the misuse of fake image technology has raised a series of security problems, such as malicious tampering with other people's photos and videos, and invasion of personal privacy. Inspired by the generative adversarial networks, this work proposes a novel adversarial attack method, aiming to gain insight into the weaknesses of the image classification system and improve its anti-attack ability. Specifically, the generative adversarial networks are used to generate adversarial samples with small perturbations but enough to affect the decision-making of the classifier, and the adversarial samples are generated through the adversarial learning of the training generator and the classifier. From extensive experiment analysis, we evaluate the effectiveness of the method on a classical image classification dataset, and the results show that our model successfully deceives a variety of advanced classifiers while maintaining the naturalness of adversarial samples.
- Abstract(参考訳): 画像分類システムに対する敵対的攻撃は、機械学習分野において常に重要な問題であり、画像生成分野の一般的なモデルであるGAN(Generative Adversarial Network)は、その強力な生成能力のために、様々な新しいシナリオで広く利用されている。
しかし、生成的敵ネットワークの普及に伴い、偽画像技術の誤用は、他人の写真やビデオの不正な改ざんや個人のプライバシー侵害など、一連のセキュリティ問題を引き起こしている。
本研究は, 画像分類システムの弱点を把握し, 対人攻撃能力を向上することを目的とした, 新たな対人攻撃手法を提案する。
具体的には、生成した対向ネットワークを用いて、小さな摂動を伴う対向サンプルを生成するが、分類器の決定に影響を及ぼすには十分であり、トレーニングジェネレータと分類器の対向学習により、対向サンプルを生成する。
実験結果から,本手法の有効性を古典的画像分類データセットで評価し,本モデルが自然性を維持しつつ,様々な高度な分類器を認識できることを示した。
関連論文リスト
- Efficient Visualization of Neural Networks with Generative Models and Adversarial Perturbations [0.0]
本稿では,既存の手法を改良した生成ネットワークによるディープビジュアライゼーション手法を提案する。
我々のモデルは、使用するネットワーク数を減らし、ジェネレータと識別器のみを必要とすることにより、アーキテクチャを単純化する。
我々のモデルは、事前の訓練知識を少なくし、差別者がガイドとして機能する非敵的訓練プロセスを使用する。
論文 参考訳(メタデータ) (2024-09-20T14:59:25Z) - Imperceptible Face Forgery Attack via Adversarial Semantic Mask [59.23247545399068]
本稿では, 対向性, 可視性に優れた対向性例を生成できるASMA(Adversarial Semantic Mask Attack framework)を提案する。
具体的には, 局所的なセマンティック領域の摂動を抑制し, 良好なステルス性を実現する, 対向型セマンティックマスク生成モデルを提案する。
論文 参考訳(メタデータ) (2024-06-16T10:38:11Z) - LFAA: Crafting Transferable Targeted Adversarial Examples with
Low-Frequency Perturbations [25.929492841042666]
本稿では,トランスファー可能な対象対向例を生成するための新しい手法を提案する。
画像の高周波成分の摂動にディープニューラルネットワークの脆弱性を利用する。
提案手法は最先端手法よりも優れている。
論文 参考訳(メタデータ) (2023-10-31T04:54:55Z) - Counterfactual Image Generation for adversarially robust and
interpretable Classifiers [1.3859669037499769]
本稿では,GAN(Generative Adrial Networks)を基盤として,画像から画像への変換を利用した統合フレームワークを提案する。
これは、分類器と識別器を1つのモデルに組み合わせて、実際の画像をそれぞれのクラスに属性付け、生成されたイメージを「フェイク」として生成することで達成される。
モデルが敵攻撃に対するロバスト性の向上を示すことを示すとともに,判別器の「フェイクネス」値が予測の不確かさの指標となることを示す。
論文 参考訳(メタデータ) (2023-10-01T18:50:29Z) - Preemptive Image Robustification for Protecting Users against
Man-in-the-Middle Adversarial Attacks [16.017328736786922]
Man-in-the-Middleの敵対者は、ウェブユーザーがオンラインでアップロードした画像を悪意を持って傍受し、妨害する。
この種の攻撃は、単純なパフォーマンス劣化の上に厳しい倫理的懸念を引き起こす可能性がある。
本研究では, 対向摂動に頑健な自然画像近傍の点を求める2段階最適化アルゴリズムを考案した。
論文 参考訳(メタデータ) (2021-12-10T16:06:03Z) - Real-World Adversarial Examples involving Makeup Application [58.731070632586594]
フルフェイスメイクを用いた身体的敵攻撃を提案する。
我々の攻撃は、色や位置関連エラーなどのメークアップアプリケーションにおける手動エラーを効果的に克服できる。
論文 参考訳(メタデータ) (2021-09-04T05:29:28Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
本稿では,敵対的事例に基づくニューラルネットワークモデルを検討するためのビジュアルフレームワークを提案する。
これらの要素を観察することで、モデル内の悪用領域を素早く特定できることを示す。
論文 参考訳(メタデータ) (2021-03-18T13:04:21Z) - Online Alternate Generator against Adversarial Attacks [144.45529828523408]
ディープラーニングモデルは、実際の画像に準知覚可能なノイズを加えることによって合成される敵の例に非常に敏感である。
対象ネットワークのパラメータをアクセスしたり変更したりする必要のない,ポータブルな防御手法であるオンライン代替ジェネレータを提案する。
提案手法は,入力画像のスクラッチから別の画像をオンライン合成することで,対向雑音を除去・破壊する代わりに機能する。
論文 参考訳(メタデータ) (2020-09-17T07:11:16Z) - Stylized Adversarial Defense [105.88250594033053]
逆行訓練は摂動パターンを生成し、モデルを堅牢化するためのトレーニングセットにそれらを含む。
我々は、より強力な敵を作るために、機能空間から追加情報を活用することを提案する。
我々の対人訓練アプローチは、最先端の防御と比べて強い堅牢性を示している。
論文 参考訳(メタデータ) (2020-07-29T08:38:10Z) - Class-Aware Domain Adaptation for Improving Adversarial Robustness [27.24720754239852]
学習データに敵の例を注入することにより,ネットワークを訓練するための敵の訓練が提案されている。
そこで本研究では,対人防御のための新しいクラスアウェアドメイン適応法を提案する。
論文 参考訳(メタデータ) (2020-05-10T03:45:19Z) - Towards Achieving Adversarial Robustness by Enforcing Feature
Consistency Across Bit Planes [51.31334977346847]
我々は、高ビット平面の情報に基づいて粗い印象を形成するためにネットワークを訓練し、低ビット平面を用いて予測を洗練させる。
異なる量子化画像間で学習した表現に一貫性を付与することにより、ネットワークの対角的ロバスト性が大幅に向上することを示した。
論文 参考訳(メタデータ) (2020-04-01T09:31:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。