On Enhancing Network Throughput using Reinforcement Learning in Sliced Testbeds
- URL: http://arxiv.org/abs/2412.16673v1
- Date: Sat, 21 Dec 2024 15:47:49 GMT
- Title: On Enhancing Network Throughput using Reinforcement Learning in Sliced Testbeds
- Authors: Daniel Pereira Monteiro, Lucas Nardelli de Freitas Botelho Saar, Larissa Ferreira Rodrigues Moreira, Rodrigo Moreira,
- Abstract summary: This paper introduces the Enhanced Mobile Broadband (eMBB)-Agent as a new approach that uses Reinforcement Learning (RL) in a vertical application to network slicing throughput to fit Service-Level Agreements (SLAs)
The eMBB-Agent analyzes application transmission variables and proposes actions within a discrete space to adjust the reception window using a Deep Q-Network (DQN)
- Score: 0.0
- License:
- Abstract: Novel applications demand high throughput, low latency, and high reliability connectivity and still pose significant challenges to slicing orchestration architectures. The literature explores network slicing techniques that employ canonical methods, artificial intelligence, and combinatorial optimization to address errors and ensure throughput for network slice data plane. This paper introduces the Enhanced Mobile Broadband (eMBB)-Agent as a new approach that uses Reinforcement Learning (RL) in a vertical application to enhance network slicing throughput to fit Service-Level Agreements (SLAs). The eMBB-Agent analyzes application transmission variables and proposes actions within a discrete space to adjust the reception window using a Deep Q-Network (DQN). This paper also presents experimental results that examine the impact of factors such as the channel error rate, DQN model layers, and learning rate on model convergence and achieved throughput, providing insights on embedding intelligence in network slicing.
Related papers
- AI Flow at the Network Edge [58.31090055138711]
AI Flow is a framework that streamlines the inference process by jointly leveraging the heterogeneous resources available across devices, edge nodes, and cloud servers.
This article serves as a position paper for identifying the motivation, challenges, and principles of AI Flow.
arXiv Detail & Related papers (2024-11-19T12:51:17Z) - Adaptive Anomaly Detection in Network Flows with Low-Rank Tensor Decompositions and Deep Unrolling [9.20186865054847]
Anomaly detection (AD) is increasingly recognized as a key component for ensuring the resilience of future communication systems.
This work considers AD in network flows using incomplete measurements.
We propose a novel block-successive convex approximation algorithm based on a regularized model-fitting objective.
Inspired by Bayesian approaches, we extend the model architecture to perform online adaptation to per-flow and per-time-step statistics.
arXiv Detail & Related papers (2024-09-17T19:59:57Z) - GFN: A graph feedforward network for resolution-invariant reduced operator learning in multifidelity applications [0.0]
This work presents a novel resolution-invariant model order reduction strategy for multifidelity applications.
We base our architecture on a novel neural network layer developed in this work, the graph feedforward network.
We exploit the method's capability of training and testing on different mesh sizes in an autoencoder-based reduction strategy for parametrised partial differential equations.
arXiv Detail & Related papers (2024-06-05T18:31:37Z) - Multi Agent DeepRL based Joint Power and Subchannel Allocation in IAB
networks [0.0]
Integrated Access and Backhauling (IRL) is a viable approach for meeting the unprecedented need for higher data rates of future generations.
In this paper, we show how we can use Deep Q-Learning Network to handle problems with huge action spaces associated with fractional nodes.
arXiv Detail & Related papers (2023-08-31T21:30:25Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs)
Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization.
We present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs.
arXiv Detail & Related papers (2022-11-29T13:32:38Z) - Hybridization of Capsule and LSTM Networks for unsupervised anomaly
detection on multivariate data [0.0]
This paper introduces a novel NN architecture which hybridises the Long-Short-Term-Memory (LSTM) and Capsule Networks into a single network.
The proposed method uses an unsupervised learning technique to overcome the issues with finding large volumes of labelled training data.
arXiv Detail & Related papers (2022-02-11T10:33:53Z) - CATRO: Channel Pruning via Class-Aware Trace Ratio Optimization [61.71504948770445]
We propose a novel channel pruning method via Class-Aware Trace Ratio Optimization (CATRO) to reduce the computational burden and accelerate the model inference.
We show that CATRO achieves higher accuracy with similar cost or lower cost with similar accuracy than other state-of-the-art channel pruning algorithms.
Because of its class-aware property, CATRO is suitable to prune efficient networks adaptively for various classification subtasks, enhancing handy deployment and usage of deep networks in real-world applications.
arXiv Detail & Related papers (2021-10-21T06:26:31Z) - Semi-supervised Network Embedding with Differentiable Deep Quantisation [81.49184987430333]
We develop d-SNEQ, a differentiable quantisation method for network embedding.
d-SNEQ incorporates a rank loss to equip the learned quantisation codes with rich high-order information.
It is able to substantially compress the size of trained embeddings, thus reducing storage footprint and accelerating retrieval speed.
arXiv Detail & Related papers (2021-08-20T11:53:05Z) - DAIS: Automatic Channel Pruning via Differentiable Annealing Indicator
Search [55.164053971213576]
convolutional neural network has achieved great success in fulfilling computer vision tasks despite large computation overhead.
Structured (channel) pruning is usually applied to reduce the model redundancy while preserving the network structure.
Existing structured pruning methods require hand-crafted rules which may lead to tremendous pruning space.
arXiv Detail & Related papers (2020-11-04T07:43:01Z) - Compact Neural Representation Using Attentive Network Pruning [1.0152838128195465]
We describe a Top-Down attention mechanism that is added to a Bottom-Up feedforward network to select important connections and subsequently prune redundant ones at all parametric layers.
Our method not only introduces a novel hierarchical selection mechanism as the basis of pruning but also remains competitive with previous baseline methods in the experimental evaluation.
arXiv Detail & Related papers (2020-05-10T03:20:01Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.