論文の概要: Fundamental thresholds for computational and erasure errors via the coherent information
- arxiv url: http://arxiv.org/abs/2412.16727v1
- Date: Sat, 21 Dec 2024 18:30:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:55:50.181921
- Title: Fundamental thresholds for computational and erasure errors via the coherent information
- Title(参考訳): コヒーレント情報による計算・消去誤差の基本しきい値
- Authors: Luis Colmenarez, Seyong Kim, Markus Müller,
- Abstract要約: ノイズの多いQEC符号に関連する混合状態密度演算子のコヒーレント情報(CI)に基づくフレームワークを提案する。
両種類の誤りが存在する場合, 汎用安定化器QEC符号に対して, 統計力学マッピングの異なるファミリーを厳格に導出する方法を示す。
- 参考スコア(独自算出の注目度): 1.4767596539913115
- License:
- Abstract: Quantum error correcting (QEC) codes protect quantum information against environmental noise. Computational errors caused by the environment change the quantum state within the qubit subspace, whereas quantum erasures correspond to the loss of qubits at known positions. Correcting either type of error involves different correction mechanisms, which makes studying the interplay between erasure and computational errors particularly challenging. In this work, we propose a framework based on the coherent information (CI) of the mixed-state density operator associated to noisy QEC codes, for treating both types of errors together. We show how to rigorously derive different families of statistical mechanics mappings for generic stabilizer QEC codes in the presence of both types of errors. We observe that the erasure errors enter as a classical average over fully depolarizing channels. Further, we show that computing the CI for erasure errors only can be done efficiently upon sampling over erasure configurations. We then test our approach on the 2D toric and color codes and compute optimal thresholds for erasure errors only, finding a $50\%$ threshold for both codes. This strengthens the notion that both codes share the same optimal thresholds. When considering both computational and erasure errors, the CI of small-size codes yields thresholds in very accurate agreement with established results that have been obtained in the thermodynamic limit. We thereby further establish the CI as a practical tool for studying optimal thresholds under realistic noise and as a means for uncovering new relations between QEC codes and statistical physics models.
- Abstract(参考訳): 量子誤り訂正(QEC)符号は、環境騒音に対して量子情報を保護している。
環境によって引き起こされる計算誤差は、量子ビット部分空間内の量子状態を変化させる一方、量子消去は既知の位置における量子ビットの損失に対応する。
いずれの種類のエラーの修正にも異なる補正機構が伴うため、消去と計算エラーの相互作用を研究することは特に困難である。
本研究では,ノイズの多いQEC符号に関連付けられた混合状態密度演算子のコヒーレント情報(CI)に基づくフレームワークを提案する。
両種類の誤りが存在する場合, 汎用安定化器QEC符号に対して, 統計力学マッピングの異なるファミリーを厳格に導出する方法を示す。
消去誤差は, 完全脱分極チャネル上での古典的な平均値となる。
さらに, 消去誤差に対するCI計算は, 消去構成のサンプリング時にのみ効率的に行うことができることを示す。
次に、2Dトーリックおよびカラーコードに対する我々のアプローチを検証し、エラーの消去のみを最適しきい値として計算し、両方のコードに対して50セントのしきい値を求める。
これにより、両方の符号が同じ最適しきい値を共有するという概念が強化される。
計算誤差と消去誤差の両方を考慮すると、小型符号のCIは熱力学限界で得られた確立された結果と非常に正確な一致で閾値を得る。
そこで我々は,現実的な雑音下で最適なしきい値を研究するための実用的なツールとしてCIを確立するとともに,QEC符号と統計物理モデルとの新たな関係を明らかにする手段として,CIを確立する。
関連論文リスト
- Extracting Error Thresholds through the Framework of Approximate Quantum
Error Correction Condition [0.0]
物理ノイズに対する量子メモリのロバスト性は 2つの方法によって測定される。
正確で近似的な量子誤差補正(QEC)条件。
論理エラー率がシステムサイズで減少するかどうかを評価するデコーダ依存エラーしきい値。
論文 参考訳(メタデータ) (2023-12-28T12:37:49Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
我々は、支配的なノイズを既知の場所での消去に効率よく変換することで、消去量子ビットの考え方を利用する。
消去量子ビットと最近導入されたFloquet符号に基づくQECスキームの提案と最適化を行う。
以上の結果から, 消去量子ビットに基づくQECスキームは, より複雑であるにもかかわらず, 標準手法よりも著しく優れていることが示された。
論文 参考訳(メタデータ) (2023-12-21T17:40:18Z) - Accurate optimal quantum error correction thresholds from coherent information [1.351813974961217]
ノイズの多いQEC符号の混合状態のコヒーレント情報を用いて、関連するQEC閾値を正確に推定する。
本研究は,最先端QEC符号の最適しきい値を計算するための信頼性の高い競争実践ツールとして,コヒーレント情報を確立した。
論文 参考訳(メタデータ) (2023-12-11T18:59:58Z) - DGR: Tackling Drifted and Correlated Noise in Quantum Error Correction via Decoding Graph Re-weighting [14.817445452647588]
量子オーバーヘッドを伴わない効率的なデコードグラフエッジ再重み付け戦略を提案する。
DGRは、平均ケースノイズミスマッチで論理誤差率を3.6倍にし、最悪のケースミスマッチで5000倍以上の改善を行う。
論文 参考訳(メタデータ) (2023-11-27T18:26:16Z) - Testing the Accuracy of Surface Code Decoders [55.616364225463066]
大規模でフォールトトレラントな量子計算は量子エラー訂正符号(QECC)によって実現される
本研究は,QECC復号方式の精度と有効性をテストするための最初の体系的手法である。
論文 参考訳(メタデータ) (2023-11-21T10:22:08Z) - Efficient Simulation of Leakage Errors in Quantum Error Correcting Codes
Using Tensor Network Methods [0.2209921757303168]
本稿では,量子誤り訂正符号(QECCs)の漏洩誤りを計算効率よく研究するためのシミュレーション手法を提案する。
提案手法は, 熱雑音やコヒーレント誤差など, 近似を伴わない様々な漏れ過程のシミュレーションを可能にする。
誤り訂正プロセス中に発生する少量の絡み合いを利用して、数百キューディットまでの大規模なシステムを多くのコードサイクルで研究することができる。
論文 参考訳(メタデータ) (2023-08-16T07:36:33Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
高速かつ高精度なデコーダを導入し、幅広い種類の量子誤り訂正符号で使用することができる。
我々のデコーダは、信仰マッチングと信念フィンドと呼ばれ、すべてのノイズ情報を活用し、QECの高精度なデモを解き放つ。
このデコーダは, 標準の正方形曲面符号に対して, 整形曲面符号において, より高いしきい値と低い量子ビットオーバーヘッドをもたらすことがわかった。
論文 参考訳(メタデータ) (2022-03-09T18:48:54Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
テレポーテーションに基づく誤り訂正回路を用いて、回転対称符号の誤り訂正能力を解析する。
マイクロ波光学における現在達成可能な測定効率により, ボソニック回転符号の破壊ポテンシャルは著しく低下することが判明した。
論文 参考訳(メタデータ) (2021-08-02T16:12:13Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
本稿では、電波トラップで閉じ込められた1本のイオン列をベースとした量子計算アーキテクチャにおけるクロストーク誤差の研究を行い、個別に調整されたレーザービームで操作する。
この種の誤差は、理想的には、異なるアクティブな量子ビットのセットで処理される単一量子ゲートと2量子ビットの量子ゲートが適用されている間は、未修正のままであるオブザーバー量子ビットに影響を及ぼす。
我々は,第1原理からクロストーク誤りを微視的にモデル化し,コヒーレント対非コヒーレントなエラーモデリングの重要性を示す詳細な研究を行い,ゲートレベルでクロストークを積極的に抑制するための戦略について議論する。
論文 参考訳(メタデータ) (2020-12-21T14:20:40Z) - Optimal noise estimation from syndrome statistics of quantum codes [0.7264378254137809]
量子誤差補正は、ノイズが十分に弱いときに量子計算で発生する誤りを積極的に補正することができる。
伝統的に、この情報は、操作前にデバイスをベンチマークすることで得られる。
復号時に行われた測定のみから何が学べるかという問題に対処する。
論文 参考訳(メタデータ) (2020-10-05T18:00:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。