論文の概要: Extracting Error Thresholds through the Framework of Approximate Quantum
Error Correction Condition
- arxiv url: http://arxiv.org/abs/2312.16991v1
- Date: Thu, 28 Dec 2023 12:37:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-29 16:33:25.840971
- Title: Extracting Error Thresholds through the Framework of Approximate Quantum
Error Correction Condition
- Title(参考訳): 近似量子誤差補正条件の枠組みによる誤差閾値の抽出
- Authors: Yuanchen Zhao, Dong E. Liu
- Abstract要約: 物理ノイズに対する量子メモリのロバスト性は 2つの方法によって測定される。
正確で近似的な量子誤差補正(QEC)条件。
論理エラー率がシステムサイズで減少するかどうかを評価するデコーダ依存エラーしきい値。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The robustness of quantum memory against physical noises is measured by two
methods: the exact and approximate quantum error correction (QEC) conditions
for error recoverability, and the decoder-dependent error threshold which
assesses if the logical error rate diminishes with system size. Here we unravel
their relations and propose a unified framework to extract an intrinsic error
threshold from the approximate QEC condition, which could upper bound other
decoder-dependent error thresholds. Our proof establishes that relative
entropy, effectively measuring deviations from exact QEC conditions, serves as
the order parameter delineating the transition from asymptotic recoverability
to unrecoverability. Consequently, we establish a unified framework for
determining the error threshold across both exact and approximate QEC codes,
addressing errors originating from noise channels as well as those from code
space imperfections. This result sharpens our comprehension of error thresholds
across diverse QEC codes and error models.
- Abstract(参考訳): 物理ノイズに対する量子メモリのロバスト性は、誤差回復性に対する正確で近似的な量子エラー補正(QEC)条件と、論理誤差率がシステムサイズで減少するかどうかを評価するデコーダ依存誤差閾値の2つの方法によって測定される。
ここでは、それらの関係を解明し、近似qec条件から本質的エラー閾値を抽出するための統一フレームワークを提案する。
本証明は, 相対エントロピーが漸近的回復可能性から回復不可能性への遷移を表わす順序パラメータとして有効であることを示す。
そこで我々は,QEC符号の正確かつ近似的な誤差閾値を決定するための統一的なフレームワークを構築し,ノイズチャネルやコード空間の不完全性から発生する誤りに対処する。
これにより、様々なQECコードとエラーモデル間のエラーしきい値の理解が深まる。
関連論文リスト
- Analysis of Maximum Threshold and Quantum Security for Fault-Tolerant
Encoding and Decoding Scheme Base on Steane Code [10.853582091917236]
エンコードされたブロックのCNOTゲートがエラーの伝播を引き起こす可能性があるため、オリジナルのSteaneコードはフォールトトレラントではない。
まず, 誤り訂正期間において, 量子ゲート毎に発生する全てのエラーを解析するフォールトトレラント符号化・復号方式を提案する。
次に、耐故障性の準備とアシラリー状態の検証を含む、普遍量子ゲート集合の耐故障性スキームを提供する。
論文 参考訳(メタデータ) (2024-03-07T07:46:03Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
我々は、支配的なノイズを既知の場所での消去に効率よく変換することで、消去量子ビットの考え方を利用する。
消去量子ビットと最近導入されたFloquet符号に基づくQECスキームの提案と最適化を行う。
以上の結果から, 消去量子ビットに基づくQECスキームは, より複雑であるにもかかわらず, 標準手法よりも著しく優れていることが示された。
論文 参考訳(メタデータ) (2023-12-21T17:40:18Z) - Accurate optimal quantum error correction thresholds from coherent information [1.351813974961217]
ノイズの多いQEC符号の混合状態のコヒーレント情報を用いて、関連するQEC閾値を正確に推定する。
本研究は,最先端QEC符号の最適しきい値を計算するための信頼性の高い競争実践ツールとして,コヒーレント情報を確立した。
論文 参考訳(メタデータ) (2023-12-11T18:59:58Z) - Testing the Accuracy of Surface Code Decoders [55.616364225463066]
大規模でフォールトトレラントな量子計算は量子エラー訂正符号(QECC)によって実現される
本研究は,QECC復号方式の精度と有効性をテストするための最初の体系的手法である。
論文 参考訳(メタデータ) (2023-11-21T10:22:08Z) - Quantum error correction with an Ising machine under circuit-level noise [0.4977217779934656]
そこで我々は,Ising型最適化問題として誤り推定問題を解く回路レベル雑音デコーダを開発した。
回路レベルの雑音下での表面符号のしきい値定理が約0.4%の誤差閾値で再現されることを確認する。
論文 参考訳(メタデータ) (2023-08-01T08:21:22Z) - Lattice gauge theory and topological quantum error correction with
quantum deviations in the state preparation and error detection [0.0]
トポロジカル・サーフェス・コードに着目し,マルチビット・エンタングルメント・ゲート上のノイズとコヒーレント・ノイズの両方に悩まされている場合について検討する。
我々は、このような避けられないコヒーレントエラーがエラー訂正性能に致命的な影響を及ぼす可能性があると結論付けた。
論文 参考訳(メタデータ) (2023-01-30T13:12:41Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Measurement based estimator scheme for continuous quantum error
correction [52.77024349608834]
正準離散量子誤差補正(DQEC)スキームは、安定器上の射影フォン・ノイマン測度を用いて誤差症候群を有限集合に識別する。
連続的量子誤差補正(CQEC)と呼ばれる連続的な測定に基づく量子エラー補正(QEC)は、DQECよりも高速に実行でき、資源効率も向上できる。
論理量子ビットの計測に基づく推定器 (MBE) を構築することにより, 物理量子ビットに発生する誤差をリアルタイムで正確に追跡できることを示す。
論文 参考訳(メタデータ) (2022-03-25T09:07:18Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
量子ハードウェアプラットフォーム上でのコヒーレントエラーを, サンプルユーザアプリケーションとして, 横フィールドIsing Model Hamiltonianを用いて検討した。
プロセッサ上の物理位置の異なる量子ビット群に対する、日中および日中キュービット校正ドリフトと量子回路配置の影響を同定する。
また,これらの測定値が,これらの種類の誤差をよりよく理解し,量子計算の正確性を評価するための取り組みを改善する方法についても論じる。
論文 参考訳(メタデータ) (2022-01-08T23:12:55Z) - Effect of quantum error correction on detection-induced coherent errors [0.0]
本研究では,検出誘起コヒーレントエラー下での量子誤り訂正符号(QECC)の性能について検討する。
検出によって引き起こされるコヒーレントなエラーは、未検出のエラー項となり、それは蓄積され、論理的エラーへと進化する。
論文 参考訳(メタデータ) (2021-07-19T15:42:04Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
本稿では、電波トラップで閉じ込められた1本のイオン列をベースとした量子計算アーキテクチャにおけるクロストーク誤差の研究を行い、個別に調整されたレーザービームで操作する。
この種の誤差は、理想的には、異なるアクティブな量子ビットのセットで処理される単一量子ゲートと2量子ビットの量子ゲートが適用されている間は、未修正のままであるオブザーバー量子ビットに影響を及ぼす。
我々は,第1原理からクロストーク誤りを微視的にモデル化し,コヒーレント対非コヒーレントなエラーモデリングの重要性を示す詳細な研究を行い,ゲートレベルでクロストークを積極的に抑制するための戦略について議論する。
論文 参考訳(メタデータ) (2020-12-21T14:20:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。