Evaluation of radiomic feature harmonization techniques for benign and malignant pulmonary nodules
- URL: http://arxiv.org/abs/2412.16758v2
- Date: Wed, 15 Jan 2025 14:35:11 GMT
- Title: Evaluation of radiomic feature harmonization techniques for benign and malignant pulmonary nodules
- Authors: Claire Huchthausen, Menglin Shi, Gabriel L. A. de Sousa, Jonathan Colen, Emery Shelley, James Larner, Einsley Janowski, Krishni Wijesooriya,
- Abstract summary: Radiomic features of pulmonary nodules (PNs) could aid lung cancer diagnosis, but medical image acquisition variability is an obstacle to clinical application.<n>We evaluated how to account for differences between benign and malignant PNs when correcting radiomic features' acquisition dependency.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: BACKGROUND: Radiomics provides quantitative features of pulmonary nodules (PNs) which could aid lung cancer diagnosis, but medical image acquisition variability is an obstacle to clinical application. Acquisition effects may differ between radiomic features from benign vs. malignant PNs. PURPOSE: We evaluated how to account for differences between benign and malignant PNs when correcting radiomic features' acquisition dependency. METHODS: We used 567 chest CT scans grouped as benign, malignant, or lung cancer screening (mixed benign, malignant). ComBat harmonization was applied to extracted features for variation in 4 acquisition parameters. We compared: harmonizing without distinction, harmonizing with a covariate to preserve distinctions between subgroups, and harmonizing subgroups separately. Significant ($p\le0.05$) Kruskal-Wallis tests showed whether harmonization removed acquisition dependency. A LASSO-SVM pipeline was trained on successfully harmonized features to predict malignancy. To evaluate predictive information in these features, the trained harmonization estimators and predictive model were applied to unseen test sets. Harmonization and predictive performance were assessed for 10 trials of 5-fold cross-validation. RESULTS: An average 2.1% of features (95% CI:1.9-2.4%) were acquisition-independent when harmonized without distinction, 27.3% (95% CI:25.7-28.9%) when harmonized with a covariate, and 90.9% (95% CI:90.4-91.5%) when harmonized separately. Data harmonized separately or with a covariate trained models with higher ROC-AUC for screening scans than data harmonized without distinction between benign and malignant PNs (Delong test, adjusted $p\le0.05$). CONCLUSIONS: Radiomic features of benign and malignant PNs need different corrective transformations to recover acquisition-independent distributions. This can be done by harmonizing separately or with a covariate.
Related papers
- CT Radiomics-Based Explainable Machine Learning Model for Accurate Differentiation of Malignant and Benign Endometrial Tumors: A Two-Center Study [13.471659080928823]
We developed a CT radiomics-based explainable machine learning model for diagnosing malignancy and benignity in endometrial cancer (EC) patients.<n>The diagnostic performance of the model was evaluated by using sensitivity, specificity, accuracy, precision, F1 score, confusion matrices, and ROC curves.<n>The Random Forest model emerged as the optimal choice for diagnosing EC, with a training AUC of 1.00 and a testing AUC of 0.96.
arXiv Detail & Related papers (2025-06-22T17:31:06Z) - Graph Classification and Radiomics Signature for Identification of Tuberculous Meningitis [2.2301876577897968]
Tuberculous meningitis (TBM) is a serious brain infection caused by Mycobacterium tuberculosis.
This study aims to classify TBM patients using T1-weighted (T1w) non-contrast Magnetic Resonance Imaging (MRI) scans.
arXiv Detail & Related papers (2025-04-01T16:28:39Z) - Uncertainty quantification for improving radiomic-based models in radiation pneumonitis prediction [0.0]
Recently, machine learning models with radiomic features have improved radiation pneumonitis prediction by capturing spatial information.<n>We retrospectively analyzed a cohort of 101 esophageal cancer patients.<n>Radiomic and dosiomic features improve both discriminative and calibration performance.
arXiv Detail & Related papers (2024-12-27T08:01:42Z) - Improving Fairness of Automated Chest X-ray Diagnosis by Contrastive
Learning [19.948079693716075]
Our proposed AI model utilizes supervised contrastive learning to minimize bias in CXR diagnosis.
We evaluated the methods on two datasets: the Medical Imaging and Data Resource Center (MIDRC) dataset with 77,887 CXR images and the NIH Chest X-ray dataset with 112,120 CXR images.
arXiv Detail & Related papers (2024-01-25T20:03:57Z) - Automatic Classification of Symmetry of Hemithoraces in Canine and
Feline Radiographs [0.0]
We propose a hemithoraces segmentation method based on Convolutional Neural Networks (CNNs) and active contours.
To test the robustness of the proposed thorax segmentation method to underexposure and overexposure, we synthetically corrupted properly exposed radiographs.
arXiv Detail & Related papers (2023-02-24T22:46:16Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - Incremental Value and Interpretability of Radiomics Features of Both
Lung and Epicardial Adipose Tissue for Detecting the Severity of COVID-19
Infection [4.772846544299196]
Current segmentation methods do not consider positional information.
The detection of COVID-19 lacks severity consideration for EAT radiomics features, which limits interpretability.
This study investigates the use of radiomics features from EAT and lungs to detect the severity of COVID-19 infections.
arXiv Detail & Related papers (2023-01-29T03:31:51Z) - Open-radiomics: A Collection of Standardized Datasets and a Technical
Protocol for Reproducible Radiomics Machine Learning Pipelines [0.0]
We introduce open-radiomics, a set of radiomics datasets and a comprehensive radiomics pipeline.
Experiments are conducted on BraTS 2020 open-source Magnetic Resonance Imaging (MRI) dataset.
Unlike binWidth and image normalization, tumor subregion and imaging sequence significantly affected performance of the models.
arXiv Detail & Related papers (2022-07-29T16:37:46Z) - Quantification of pulmonary involvement in COVID-19 pneumonia by means
of a cascade oftwo U-nets: training and assessment on multipledatasets using
different annotation criteria [83.83783947027392]
This study aims at exploiting Artificial intelligence (AI) for the identification, segmentation and quantification of COVID-19 pulmonary lesions.
We developed an automated analysis pipeline, the LungQuant system, based on a cascade of two U-nets.
The accuracy in predicting the CT-Severity Score (CT-SS) of the LungQuant system has been also evaluated.
arXiv Detail & Related papers (2021-05-06T10:21:28Z) - Lung Cancer Diagnosis Using Deep Attention Based on Multiple Instance
Learning and Radiomics [13.028105771052376]
We treat lung cancer diagnosis as a multiple instance learning (MIL) problem in order to better reflect the diagnosis process in the clinical setting.
We chose radiomics as the source of input features and deep attention-based MIL as the classification algorithm.
The results show that our method can achieve a mean accuracy of 0.807 with a standard error of the mean (SEM) of 0.069, a recall of 0.870 (SEM 0.061), a positive predictive value of 0.928 (SEM 0.078), a negative predictive value of 0.591 (SEM 0.155) and an area under the curve (AUC) of 0.842 (
arXiv Detail & Related papers (2021-04-29T21:04:02Z) - Comparison of Machine Learning Classifiers to Predict Patient Survival
and Genetics of GBM: Towards a Standardized Model for Clinical Implementation [44.02622933605018]
Radiomic models have been shown to outperform clinical data for outcome prediction in glioblastoma (GBM)
We aimed to compare nine machine learning classifiers to predict overall survival (OS), isocitrate dehydrogenase (IDH) mutation, O-6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation, epidermal growth factor receptor (EGFR) VII amplification and Ki-67 expression in GBM patients.
xGB obtained maximum accuracy for OS (74.5%), AB for IDH mutation (88%), MGMT methylation (71,7%), Ki-67 expression (86,6%), and EGFR amplification (81,
arXiv Detail & Related papers (2021-02-10T15:10:37Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - A multicenter study on radiomic features from T$_2$-weighted images of a
customized MR pelvic phantom setting the basis for robust radiomic models in
clinics [47.187609203210705]
2D and 3D T$$-weighted images of a pelvic phantom were acquired on three scanners.
repeatability and repositioning of radiomic features were assessed.
arXiv Detail & Related papers (2020-05-14T09:24:48Z) - Automated Quantification of CT Patterns Associated with COVID-19 from
Chest CT [48.785596536318884]
The proposed method takes as input a non-contrasted chest CT and segments the lesions, lungs, and lobes in three dimensions.
The method outputs two combined measures of the severity of lung and lobe involvement, quantifying both the extent of COVID-19 abnormalities and presence of high opacities.
Evaluation of the algorithm is reported on CTs of 200 participants (100 COVID-19 confirmed patients and 100 healthy controls) from institutions from Canada, Europe and the United States.
arXiv Detail & Related papers (2020-04-02T21:49:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.