CT Radiomics-Based Explainable Machine Learning Model for Accurate Differentiation of Malignant and Benign Endometrial Tumors: A Two-Center Study
- URL: http://arxiv.org/abs/2506.18106v1
- Date: Sun, 22 Jun 2025 17:31:06 GMT
- Title: CT Radiomics-Based Explainable Machine Learning Model for Accurate Differentiation of Malignant and Benign Endometrial Tumors: A Two-Center Study
- Authors: Tingrui Zhang, Honglin Wu, Zekun Jiang, Yingying Wang, Rui Ye, Huiming Ni, Chang Liu, Jin Cao, Xuan Sun, Rong Shao, Xiaorong Wei, Yingchun Sun,
- Abstract summary: We developed a CT radiomics-based explainable machine learning model for diagnosing malignancy and benignity in endometrial cancer (EC) patients.<n>The diagnostic performance of the model was evaluated by using sensitivity, specificity, accuracy, precision, F1 score, confusion matrices, and ROC curves.<n>The Random Forest model emerged as the optimal choice for diagnosing EC, with a training AUC of 1.00 and a testing AUC of 0.96.
- Score: 13.471659080928823
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Aimed to develop and validate a CT radiomics-based explainable machine learning model for diagnosing malignancy and benignity specifically in endometrial cancer (EC) patients. A total of 83 EC patients from two centers, including 46 with malignant and 37 with benign conditions, were included, with data split into a training set (n=59) and a testing set (n=24). The regions of interest (ROIs) were manually segmented from pre-surgical CT scans, and 1132 radiomic features were extracted from the pre-surgical CT scans using Pyradiomics. Six explainable machine learning modeling algorithms were implemented respectively, for determining the optimal radiomics pipeline. The diagnostic performance of the radiomic model was evaluated by using sensitivity, specificity, accuracy, precision, F1 score, confusion matrices, and ROC curves. To enhance clinical understanding and usability, we separately implemented SHAP analysis and feature mapping visualization, and evaluated the calibration curve and decision curve. By comparing six modeling strategies, the Random Forest model emerged as the optimal choice for diagnosing EC, with a training AUC of 1.00 and a testing AUC of 0.96. SHAP identified the most important radiomic features, revealing that all selected features were significantly associated with EC (P < 0.05). Radiomics feature maps also provide a feasible assessment tool for clinical applications. DCA indicated a higher net benefit for our model compared to the "All" and "None" strategies, suggesting its clinical utility in identifying high-risk cases and reducing unnecessary interventions. In conclusion, the CT radiomics-based explainable machine learning model achieved high diagnostic performance, which could be used as an intelligent auxiliary tool for the diagnosis of endometrial cancer.
Related papers
- RadFabric: Agentic AI System with Reasoning Capability for Radiology [61.25593938175618]
RadFabric is a multi agent, multimodal reasoning framework that unifies visual and textual analysis for comprehensive CXR interpretation.<n>System employs specialized CXR agents for pathology detection, an Anatomical Interpretation Agent to map visual findings to precise anatomical structures, and a Reasoning Agent powered by large multimodal reasoning models to synthesize visual, anatomical, and clinical data into transparent and evidence based diagnoses.
arXiv Detail & Related papers (2025-06-17T03:10:33Z) - Synthetic CT image generation from CBCT: A Systematic Review [44.01505745127782]
Generation of synthetic CT (sCT) images from cone-beam CT (CBCT) data using deep learning methodologies represents a significant advancement in radiation oncology.<n>A total of 35 relevant studies were identified and analyzed, revealing the prevalence of deep learning approaches in the generation of sCT.
arXiv Detail & Related papers (2025-01-22T13:54:07Z) - AI-assisted prostate cancer detection and localisation on biparametric MR by classifying radiologist-positives [5.75804178993065]
We propose to develop deep learning models that improve the overall cancer diagnostic accuracy.
We develop a single voxel-level classification model, with a simple percentage threshold to determine positive cases.
Based on the presented experiments from two clinical data sets, we show that the proposed strategy can improve the diagnostic accuracy.
arXiv Detail & Related papers (2024-10-30T14:59:57Z) - MGH Radiology Llama: A Llama 3 70B Model for Radiology [50.42811030970618]
This paper presents an advanced radiology-focused large language model: MGH Radiology Llama.<n>It is developed using the Llama 3 70B model, building upon previous domain-specific models like Radiology-GPT and Radiology-Llama2.<n>Our evaluation, incorporating both traditional metrics and a GPT-4-based assessment, highlights the enhanced performance of this work over general-purpose LLMs.
arXiv Detail & Related papers (2024-08-13T01:30:03Z) - Unraveling Radiomics Complexity: Strategies for Optimal Simplicity in Predictive Modeling [4.1032659987778315]
The high dimensionality of radiomic feature sets, the variability in radiomic feature types and potentially high computational requirements all underscore the need for an effective method to identify the smallest set of predictive features for a given clinical problem.
We develop a methodology and tools to identify and explain the smallest set of predictive radiomic features.
arXiv Detail & Related papers (2024-07-05T23:14:46Z) - Analysis of the 2024 BraTS Meningioma Radiotherapy Planning Automated Segmentation Challenge [45.3253187215396]
The 2024 Brain Tumor Meningioma Radiotherapy (BraTS-MEN-RT) challenge aimed to advance automated segmentation algorithms.<n>We describe the design and results from the BraTS-MEN-RT challenge.
arXiv Detail & Related papers (2024-05-28T17:25:43Z) - Exploring Kinetic Curves Features for the Classification of Benign and Malignant Breast Lesions in DCE-MRI [3.3382992386198675]
We propose to leverage the dynamic characteristics from the kinetic curves as well as the radiomic features to boost the classification accuracy of benign and malignant breast lesions.
The proposed method is evaluated on an in-house dataset including 200 DCE-MRI scans with 298 breast tumors.
arXiv Detail & Related papers (2024-04-22T07:08:13Z) - Radiomics as a measure superior to the Dice similarity coefficient for
tumor segmentation performance evaluation [0.0]
This study proposes Radiomics features as a superior measure for assessing the segmentation ability of physicians and auto-segmentation tools.
Radiomics features, particularly those related to shape and energy, can capture subtle variations in tumor segmentation characteristics, unlike Dice Similarity Coefficient (DSC)
Findings suggest that these new metrics can be employed to assess novel auto-segmentation methods and enhance the training of individuals in medical segmentation.
arXiv Detail & Related papers (2023-10-30T21:50:08Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuer is a tailored model for automatic radiology report generation that learns generalizable representations.
The clinical dataset utilized in this study encompasses a remarkable total of textbf332,673 observations.
ChatRadio-Valuer consistently outperforms state-of-the-art models, especially ChatGPT (GPT-3.5-Turbo) and GPT-4 et al.
arXiv Detail & Related papers (2023-10-08T17:23:17Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
The deep learning model was developed with 1868 eligible NCCT scans with non-traumatic ICH collected between January 2011 and April 2018.
The model's diagnostic performance was compared with clinicians's performance.
The clinicians achieve significant improvements in the sensitivity, specificity, and accuracy of diagnoses of certain hemorrhage etiologies with proposed system augmentation.
arXiv Detail & Related papers (2023-02-02T08:45:17Z) - Diagnose Like a Radiologist: Hybrid Neuro-Probabilistic Reasoning for
Attribute-Based Medical Image Diagnosis [42.624671531003166]
We introduce a hybrid neuro-probabilistic reasoning algorithm for verifiable attribute-based medical image diagnosis.
We have successfully applied our hybrid reasoning algorithm to two challenging medical image diagnosis tasks.
arXiv Detail & Related papers (2022-08-19T12:06:46Z) - Interpretative Computer-aided Lung Cancer Diagnosis: from Radiology
Analysis to Malignancy Evaluation [13.62944920454488]
We propose a joint radiology analysis and malignancy evaluation network (R2MNet) to evaluate the pulmonary nodule malignancy.
The proposed method achieved area under curve of 96.27% on radiology analysis and AUC of 97.52% on nodule malignancy evaluation.
arXiv Detail & Related papers (2021-02-22T11:40:43Z) - Comparison of Machine Learning Classifiers to Predict Patient Survival
and Genetics of GBM: Towards a Standardized Model for Clinical Implementation [44.02622933605018]
Radiomic models have been shown to outperform clinical data for outcome prediction in glioblastoma (GBM)
We aimed to compare nine machine learning classifiers to predict overall survival (OS), isocitrate dehydrogenase (IDH) mutation, O-6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation, epidermal growth factor receptor (EGFR) VII amplification and Ki-67 expression in GBM patients.
xGB obtained maximum accuracy for OS (74.5%), AB for IDH mutation (88%), MGMT methylation (71,7%), Ki-67 expression (86,6%), and EGFR amplification (81,
arXiv Detail & Related papers (2021-02-10T15:10:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.