Optimization Insights into Deep Diagonal Linear Networks
- URL: http://arxiv.org/abs/2412.16765v1
- Date: Sat, 21 Dec 2024 20:23:47 GMT
- Title: Optimization Insights into Deep Diagonal Linear Networks
- Authors: Hippolyte Labarrière, Cesare Molinari, Lorenzo Rosasco, Silvia Villa, Cristian Vega,
- Abstract summary: We study the implicit regularization properties of the gradient flow "algorithm" for estimating the parameters of a deep diagonal neural network.
Our main contribution is showing that this gradient flow induces a mirror flow dynamic on the model, meaning that it is biased towards a specific solution of the problem.
- Score: 10.395029724463672
- License:
- Abstract: Overparameterized models trained with (stochastic) gradient descent are ubiquitous in modern machine learning. These large models achieve unprecedented performance on test data, but their theoretical understanding is still limited. In this paper, we take a step towards filling this gap by adopting an optimization perspective. More precisely, we study the implicit regularization properties of the gradient flow "algorithm" for estimating the parameters of a deep diagonal neural network. Our main contribution is showing that this gradient flow induces a mirror flow dynamic on the model, meaning that it is biased towards a specific solution of the problem depending on the initialization of the network. Along the way, we prove several properties of the trajectory.
Related papers
- Deep Linear Network Training Dynamics from Random Initialization: Data, Width, Depth, and Hyperparameter Transfer [40.40780546513363]
We provide descriptions of both non-residual and residual neural networks, the latter of which enables an infinite depth limit when branches are scaled as $1/sqrttextdepth$.
We show that this model recovers the accelerated power law training dynamics for power law structured data in the rich regime observed in recent works.
arXiv Detail & Related papers (2025-02-04T17:50:55Z) - Scalable Bayesian Inference in the Era of Deep Learning: From Gaussian Processes to Deep Neural Networks [0.5827521884806072]
Large neural networks trained on large datasets have become the dominant paradigm in machine learning.
This thesis develops scalable methods to equip neural networks with model uncertainty.
arXiv Detail & Related papers (2024-04-29T23:38:58Z) - Understanding the training of infinitely deep and wide ResNets with Conditional Optimal Transport [26.47265060394168]
We show that the gradient flow for deep neural networks converges arbitrarily at a distance ofr.
This is done by relying on the theory of gradient distance of finite width in spaces.
arXiv Detail & Related papers (2024-03-19T16:34:31Z) - Implicit regularization in AI meets generalized hardness of
approximation in optimization -- Sharp results for diagonal linear networks [0.0]
We show sharp results for the implicit regularization imposed by the gradient flow of Diagonal Linear Networks.
We link this to the phenomenon of phase transitions in generalized hardness of approximation.
Non-sharpness of our results would imply that the GHA phenomenon would not occur for the basis pursuit optimization problem.
arXiv Detail & Related papers (2023-07-13T13:27:51Z) - Implicit Bias in Leaky ReLU Networks Trained on High-Dimensional Data [63.34506218832164]
In this work, we investigate the implicit bias of gradient flow and gradient descent in two-layer fully-connected neural networks with ReLU activations.
For gradient flow, we leverage recent work on the implicit bias for homogeneous neural networks to show that leakyally, gradient flow produces a neural network with rank at most two.
For gradient descent, provided the random variance is small enough, we show that a single step of gradient descent suffices to drastically reduce the rank of the network, and that the rank remains small throughout training.
arXiv Detail & Related papers (2022-10-13T15:09:54Z) - A Bayesian Perspective on Training Speed and Model Selection [51.15664724311443]
We show that a measure of a model's training speed can be used to estimate its marginal likelihood.
We verify our results in model selection tasks for linear models and for the infinite-width limit of deep neural networks.
Our results suggest a promising new direction towards explaining why neural networks trained with gradient descent are biased towards functions that generalize well.
arXiv Detail & Related papers (2020-10-27T17:56:14Z) - Channel-Directed Gradients for Optimization of Convolutional Neural
Networks [50.34913837546743]
We introduce optimization methods for convolutional neural networks that can be used to improve existing gradient-based optimization in terms of generalization error.
We show that defining the gradients along the output channel direction leads to a performance boost, while other directions can be detrimental.
arXiv Detail & Related papers (2020-08-25T00:44:09Z) - Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks [78.76880041670904]
In neural networks with binary activations and or binary weights the training by gradient descent is complicated.
We propose a new method for this estimation problem combining sampling and analytic approximation steps.
We experimentally show higher accuracy in gradient estimation and demonstrate a more stable and better performing training in deep convolutional models.
arXiv Detail & Related papers (2020-06-04T21:51:21Z) - Layer-wise Conditioning Analysis in Exploring the Learning Dynamics of
DNNs [115.35745188028169]
We extend conditioning analysis to deep neural networks (DNNs) in order to investigate their learning dynamics.
We show that batch normalization (BN) can stabilize the training, but sometimes result in the false impression of a local minimum.
We experimentally observe that BN can improve the layer-wise conditioning of the optimization problem.
arXiv Detail & Related papers (2020-02-25T11:40:27Z) - Kernel and Rich Regimes in Overparametrized Models [69.40899443842443]
We show that gradient descent on overparametrized multilayer networks can induce rich implicit biases that are not RKHS norms.
We also demonstrate this transition empirically for more complex matrix factorization models and multilayer non-linear networks.
arXiv Detail & Related papers (2020-02-20T15:43:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.