High-dimensional quantum key distribution with resource-efficient detection
- URL: http://arxiv.org/abs/2412.16782v2
- Date: Tue, 17 Jun 2025 21:11:08 GMT
- Title: High-dimensional quantum key distribution with resource-efficient detection
- Authors: Maciej Ogrodnik, Adam Widomski, Dagmar Bruß, Giovanni Chesi, Federico Grasselli, Hermann Kampermann, Chiara Macchiavello, Nathan Walk, Nikolai Wyderka, Michał Karpiński,
- Abstract summary: We present a proof of principle high-dimensional time-phase BB84 QKD experiment using only one single-photon detector per measurement basis.<n>We show experimentally-obtained simplistic key rates for the two-dimensional and four-dimensional case, including in an urban fiber network.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While quantum key distribution (QKD) based on two-dimensional (qubit) encoding is a mature, field-tested technology, its performance is lacking for many cryptographic applications. High-dimensional encoding for QKD enables increased achievable key rates and robustness as compared to the standard qubit-based systems. However, experimental implementations of such systems are more complicated, expensive, and require careful security analysis as they are less common. In this work we present a proof of principle high-dimensional time-phase BB84 QKD experiment using only one single-photon detector per measurement basis. We employ the temporal Talbot effect to detect QKD symbols in the control basis, and show experimentally-obtained simplistic key rates for the two-dimensional and four-dimensional case, including in an urban fiber network. We present a comparison of a simplistic secret key rate obtained from a standard security proof with the one derived from a recently devised proof using a tunable beam splitter to display security issues stemming from asymmetric detection efficiencies in the two bases. Our results contribute to the discussion of the benefits of high-dimensional encoding and highlight the impact of security analysis on the achievable QKD performance.
Related papers
- High-Fidelity Coherent-One-Way QKD Simulation Framework for 6G Networks: Bridging Theory and Reality [105.73011353120471]
Quantum key distribution (QKD) has been emerged as a promising solution for guaranteeing information-theoretic security.
Due to the considerable high-cost of QKD equipment, a lack of QKD communication system design tools is challenging.
This paper introduces a QKD communication system design tool.
arXiv Detail & Related papers (2025-01-21T11:03:59Z) - Secure Multi-Party Biometric Verification using QKD assisted Quantum Oblivious Transfer [34.46964288961048]
We present a practical implementation of a secure multiparty computation application enabled by quantum oblivious transfer (QOT)<n>The QOT protocol uses polarization-encoded entangled states to share oblivious keys between two parties with quantum key distribution (QKD) providing authentication.<n>A practical use case is demonstrated for privacy-preserving fingerprint matching against no-fly lists from Interpol and the United Nations.
arXiv Detail & Related papers (2025-01-09T15:51:30Z) - Loss-tolerant quantum key distribution with detection efficiency mismatch [39.58317527488534]
We establish a security proof for the loss-tolerant P&M QKD protocol that incorporates imperfections in both the source and the detectors.
Specifically, we demonstrate the security of this scheme when the emitted states deviate from the ideal ones.
arXiv Detail & Related papers (2024-12-12T19:01:56Z) - Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Quantum-Secured Data Centre Interconnect in a field environment [38.4938584033229]
Quantum key distribution (QKD) is an established quantum technology at a high readiness level.
In this article, we present the successful implementation of a QKD field trial within a commercial data centre environment.
The achieved average secret key rate of 2.392 kbps and an average quantum bit error rate of less than 2% demonstrate the commercial feasibility of QKD in real-world scenarios.
arXiv Detail & Related papers (2024-10-14T08:05:25Z) - Characterization of Intensity Correlation via Single-photon Detection in Quantum Key Distribution [10.02327858833847]
One of the most significant vulnerabilities in the source unit of quantum key distribution (QKD) is the correlation between quantum states after modulation.
We propose a methodology to characterize the intensity correlation according to the single-photon detection results in the measurement unit.
arXiv Detail & Related papers (2024-08-15T06:13:20Z) - Harnessing high-dimensional temporal entanglement using limited interferometric setups [41.94295877935867]
We develop the first complete analysis of high-dimensional entanglement in the polarization-time-domain.
We show how to efficiently certify relevant density matrix elements and security parameters for Quantum Key Distribution.
We propose a novel setup that can further enhance the noise resistance of free-space quantum communication.
arXiv Detail & Related papers (2023-08-08T17:44:43Z) - Experimental quantum secret sharing based on phase encoding of coherent
states [17.01107355316032]
We propose a quantum secret sharing protocol with simple phase encoding of coherent states among three parties.
Our scheme achieves a key rate of 85.3 bps under a 35 dB channel loss.
arXiv Detail & Related papers (2023-03-26T04:35:07Z) - Quantum Key Distribution Using a Quantum Emitter in Hexagonal Boron
Nitride [48.97025221755422]
We demonstrate a room temperature, discrete-variable quantum key distribution system using a bright single photon source in hexagonal-boron nitride.
We have generated keys with one million bits length, and demonstrated a secret key of approximately 70,000 bits, at a quantum bit error rate of 6%.
Our work demonstrates the first proof of concept finite-key BB84 QKD system realised with hBN defects.
arXiv Detail & Related papers (2023-02-13T09:38:51Z) - Improved coherent one-way quantum key distribution for high-loss
channels [0.0]
We present a simple variant of COW-QKD and prove its security in the infinite-key limit.
Remarkably, the resulting key rate of our protocol is comparable with both the existing upper-bound on COW-QKD key rate and the secure key rate of the coherent-state BB84 protocol.
arXiv Detail & Related papers (2022-06-17T00:07:03Z) - Strong pulse illumination hacks self-differencing avalanche photodiode
detectors in a high-speed quantum key distribution system [3.5097098058555787]
We investigate the loopholes of self-differencing(SD) avalanche photodiode(APD) detector.
We demonstrate experimental testing of SD APD detector under strong pulse illumination attack.
This attack presents blinding stability and helps an eavesdropper to learn the secret key without introducing extra QBER.
arXiv Detail & Related papers (2022-05-09T10:40:46Z) - Experimental measurement-device-independent type quantum key
distribution with flawed and correlated sources [14.143874849657317]
Security of quantum key distribution (QKD) is threatened by discrepancies between realistic devices and theoretical assumptions.
Here, we adopt the reference technique to prove security of an efficient four-phase measurement-device-independent QKD using laser pulses against potential source imperfections.
In addition, we demonstrate the feasibility of our protocol through a proof-of-principle experimental implementation and achieve a secure key rate of 253 bps with a 20 dB channel loss.
arXiv Detail & Related papers (2022-04-18T13:44:51Z) - High-dimensional coherent one-way quantum key distribution [0.0]
High-dimensional quantum key distribution (QKD) offers secure communication, with secure key rates that surpass those achievable by QKD protocols.
Existing high-dimensional QKD protocols require additional experimental resources, such as multiport interferometers and multiple detectors.
We present and analyze a novel protocol for arbitrary-dimensional QKD, that requires only the hardware of a standard two-dimensional system.
arXiv Detail & Related papers (2021-05-11T01:06:36Z) - Resource-efficient energy test and parameter estimation in
continuous-variable quantum key distribution [0.0]
Symmetry plays a fundamental role in the security analysis of quantum key distribution (QKD)
We show how symmetry is exploited in continuous-variable (CV) QKD to prove the optimality of Gaussian attacks in the finite-size regime.
Results show that all the raw data can be used both for key extraction and for the routines of energy test and parameter estimation.
arXiv Detail & Related papers (2021-03-29T17:04:10Z) - Efficient time-bin encoding for practical high-dimensional quantum key
distribution [0.0]
High-dimensional quantum key distribution (QKD) allows to achieve information-theoretic secure communications.
We present a novel scheme for fiber-based 4-dimensional QKD, with time and phase encoding and one-decoy state technique.
arXiv Detail & Related papers (2020-04-07T15:51:29Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.