論文の概要: Adversarially Domain-adaptive Latent Diffusion for Unsupervised Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2412.16859v2
- Date: Mon, 07 Apr 2025 02:01:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:07:22.550709
- Title: Adversarially Domain-adaptive Latent Diffusion for Unsupervised Semantic Segmentation
- Title(参考訳): 教師なしセマンティックセグメンテーションにおけるドメイン適応型遅延拡散
- Authors: Jongmin Yu, Zhongtian Sun, Chen Bene Chi, Jinhong Yang, Shan Luo,
- Abstract要約: 本研究では、ICCLD(Inter-Coder Connected Latent Diffusion)と呼ばれる潜在拡散モデルに基づくセマンティックセグメンテーション手法を提案する。
ICCLDは最先端のUDAメソッドより優れており、mIoUスコアは74.4(GTA5$rightarrow$Cityscapes)と67.2(Synthia$rightarrow$Cityscapes)である。
- 参考スコア(独自算出の注目度): 7.099012213719071
- License:
- Abstract: Semantic segmentation requires extensive pixel-level annotation, motivating unsupervised domain adaptation (UDA) to transfer knowledge from labelled source domains to unlabelled or weakly labelled target domains. One of the most efficient strategies involves using synthetic datasets generated within controlled virtual environments, such as video games or traffic simulators, which can automatically generate pixel-level annotations. However, even when such datasets are available, learning a well-generalised representation that captures both domains remains challenging, owing to probabilistic and geometric discrepancies between the virtual world and real-world imagery. This work introduces a semantic segmentation method based on latent diffusion models, termed Inter-Coder Connected Latent Diffusion (ICCLD), alongside an unsupervised domain adaptation approach. The model employs an inter-coder connection to enhance contextual understanding and preserve fine details, while adversarial learning aligns latent feature distributions across domains during the latent diffusion process. Experiments on GTA5, Synthia, and Cityscapes demonstrate that ICCLD outperforms state-of-the-art UDA methods, achieving mIoU scores of 74.4 (GTA5$\rightarrow$Cityscapes) and 67.2 (Synthia$\rightarrow$Cityscapes).
- Abstract(参考訳): セマンティックセグメンテーションは広範なピクセルレベルのアノテーションを必要とし、ラベル付きソースドメインからの知識をラベル付きまたは弱いラベル付きターゲットドメインに転送するために、教師なしドメイン適応(UDA)を動機付けている。
最も効率的な戦略の1つは、ビデオゲームやトラフィックシミュレータなど、制御された仮想環境内で生成された合成データセットを使用することで、ピクセルレベルのアノテーションを自動的に生成することができる。
しかし、そのようなデータセットが利用可能であったとしても、仮想世界と現実世界のイメージ間の確率的および幾何学的差異のため、両方の領域をキャプチャするよく一般化された表現を学習することは依然として困難である。
本研究では、非教師付きドメイン適応手法とともに、ICCLD(Inter-Coder Connected Latent Diffusion)と呼ばれる潜在拡散モデルに基づくセマンティックセグメンテーション手法を導入する。
このモデルでは、コンテキスト理解の強化と詳細の保存にコーダ間接続を使用し、対角学習は潜伏拡散過程においてドメイン間の潜在特徴分布を整列する。
GTA5、Synthia、Cityscapesの実験では、ICCLDは最先端のUDA法より優れており、mIoUスコアは74.4(GTA5$\rightarrow$Cityscapes)と67.2(Synthia$\rightarrow$Cityscapes)である。
関連論文リスト
- Decomposition-based Unsupervised Domain Adaptation for Remote Sensing Image Semantic Segmentation [30.606689882397223]
非教師なし領域適応(UDA)技術は、地球科学のセマンティックセグメンテーションに不可欠である。
高レベルの特徴空間におけるドメインアライメントに焦点を当てた既存のUDA手法の多くは、局所的な空間的詳細とグローバルな文脈的意味論を同時に維持するのに苦労している。
ドメイン不変表現学習を導くための新しい分解手法を提案する。
論文 参考訳(メタデータ) (2024-04-06T07:13:49Z) - Adaptive Betweenness Clustering for Semi-Supervised Domain Adaptation [108.40945109477886]
分類領域アライメントを実現するために,G-ABC (Adaptive Betweenness Clustering) と呼ばれる新しいSSDA手法を提案する。
提案手法は従来のSSDA手法よりも優れており,提案したG-ABCアルゴリズムの優位性を示している。
論文 参考訳(メタデータ) (2024-01-21T09:57:56Z) - Unified Domain Adaptive Semantic Segmentation [96.74199626935294]
Unsupervised Adaptive Domain Semantic (UDA-SS)は、ラベル付きソースドメインからラベル付きターゲットドメインに監督を移すことを目的としている。
本稿では,特徴量と特徴量との相違に対処するQuad-directional Mixup(QuadMix)法を提案する。
提案手法は,4つの挑戦的UDA-SSベンチマークにおいて,最先端の成果を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2023-11-22T09:18:49Z) - Attention-based Cross-Layer Domain Alignment for Unsupervised Domain
Adaptation [14.65316832227658]
教師なしドメイン適応(Unsupervised domain adapt, UDA)は、ラベル付きソースドメインから伝達可能な知識を学び、トレーニングされたモデルをラベルなしターゲットドメインに適応させることを目的としている。
1つの一般的な戦略は、ディープモデルによって抽出されたセマンティックな特徴を整合させることで、分布の相違を最小限にすることである。
論文 参考訳(メタデータ) (2022-02-27T08:36:12Z) - Semi-supervised Domain Adaptation for Semantic Segmentation [3.946367634483361]
セマンティックセグメンテーションにおけるクロスドメインとイントラドメインのギャップに対処する2段階の半教師付き二重ドメイン適応(SSDDA)手法を提案する。
提案手法は,2つの共通合成-実合成セマンティックセグメンテーションベンチマークにおいて,最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-10-20T16:13:00Z) - Unsupervised Domain Adaptation for Semantic Segmentation via Low-level
Edge Information Transfer [27.64947077788111]
セマンティックセグメンテーションのための教師なしドメイン適応は、合成データに基づいて訓練されたモデルを実際の画像に適応させることを目的としている。
従来の特徴レベルの対数学習手法は、高レベルの意味的特徴に適応するモデルのみを考慮していた。
本稿では,ドメイン間ギャップが小さい低レベルエッジ情報を明示的に利用して意味情報の伝達をガイドする試みについて紹介する。
論文 参考訳(メタデータ) (2021-09-18T11:51:31Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
リモートセンシング画像からの道路セグメンテーションは、幅広い応用可能性を持つ課題である。
本稿では,この領域における領域シフト(DS)問題に対処するため,RoadDAと呼ばれる新たな段階的ドメイン適応モデルを提案する。
2つのベンチマーク実験の結果、RoadDAはドメインギャップを効率的に減らし、最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-08-28T09:29:14Z) - Contextual-Relation Consistent Domain Adaptation for Semantic
Segmentation [44.19436340246248]
本稿では,革新的局所文脈相関整合ドメイン適応手法を提案する。
グローバルレベルのアライメントにおいて、地域レベルのコンピテンシーを達成することを目的としている。
実験では, 最先端手法と比較して, セグメンテーション性能が優れていることを示した。
論文 参考訳(メタデータ) (2020-07-05T19:00:46Z) - Domain Conditioned Adaptation Network [90.63261870610211]
本稿では,ドメイン条件付きチャネルアテンション機構を用いて,異なる畳み込みチャネルを励起するドメイン条件適応ネットワーク(DCAN)を提案する。
これは、ディープDAネットワークのドメインワイドな畳み込みチャネルアクティベーションを探求する最初の試みである。
論文 参考訳(メタデータ) (2020-05-14T04:23:24Z) - Alleviating Semantic-level Shift: A Semi-supervised Domain Adaptation
Method for Semantic Segmentation [97.8552697905657]
このタスクの重要な課題は、ソースとターゲットドメイン間のデータ分散の相違を緩和する方法である。
本稿では,グローバルな視点とローカルな視点の両方から分布の整合性を促進できるASS(Alleviating Semantic-level Shift)を提案する。
GTA5、Cityscapes、Synthia、Cityscapesの2つのドメイン適応タスクにASSを適用します。
論文 参考訳(メタデータ) (2020-04-02T03:25:05Z) - MADAN: Multi-source Adversarial Domain Aggregation Network for Domain
Adaptation [58.38749495295393]
ドメイン適応は、あるラベル付きソースドメインと、わずかにラベル付けまたはラベル付けされていないターゲットドメインの間のドメインシフトをブリッジするために、転送可能なモデルを学ぶことを目的としています。
近年のマルチソース領域適応法(MDA)では,ソースとターゲット間の画素レベルのアライメントは考慮されていない。
これらの課題に対処するための新しいMDAフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T21:22:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。