論文の概要: Multi-Modality Co-Learning for Efficient Skeleton-based Action Recognition
- arxiv url: http://arxiv.org/abs/2407.15706v6
- Date: Thu, 15 Aug 2024 12:25:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-16 17:56:52.398202
- Title: Multi-Modality Co-Learning for Efficient Skeleton-based Action Recognition
- Title(参考訳): 効率的な骨格に基づく行動認識のための多モード共学習
- Authors: Jinfu Liu, Chen Chen, Mengyuan Liu,
- Abstract要約: 本稿では,効率的な骨格に基づく行動認識のための多モード協調学習(MMCL)フレームワークを提案する。
MMCLフレームワークは,トレーニング期間中に多要素協調学習を行い,推論に簡潔な骨格のみを用いることで効率を向上する。
- 参考スコア(独自算出の注目度): 12.382193259575805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Skeleton-based action recognition has garnered significant attention due to the utilization of concise and resilient skeletons. Nevertheless, the absence of detailed body information in skeletons restricts performance, while other multimodal methods require substantial inference resources and are inefficient when using multimodal data during both training and inference stages. To address this and fully harness the complementary multimodal features, we propose a novel multi-modality co-learning (MMCL) framework by leveraging the multimodal large language models (LLMs) as auxiliary networks for efficient skeleton-based action recognition, which engages in multi-modality co-learning during the training stage and keeps efficiency by employing only concise skeletons in inference. Our MMCL framework primarily consists of two modules. First, the Feature Alignment Module (FAM) extracts rich RGB features from video frames and aligns them with global skeleton features via contrastive learning. Second, the Feature Refinement Module (FRM) uses RGB images with temporal information and text instruction to generate instructive features based on the powerful generalization of multimodal LLMs. These instructive text features will further refine the classification scores and the refined scores will enhance the model's robustness and generalization in a manner similar to soft labels. Extensive experiments on NTU RGB+D, NTU RGB+D 120 and Northwestern-UCLA benchmarks consistently verify the effectiveness of our MMCL, which outperforms the existing skeleton-based action recognition methods. Meanwhile, experiments on UTD-MHAD and SYSU-Action datasets demonstrate the commendable generalization of our MMCL in zero-shot and domain-adaptive action recognition. Our code is publicly available at: https://github.com/liujf69/MMCL-Action.
- Abstract(参考訳): スケルトンをベースとした行動認識は、簡潔で弾力性のある骨格の利用により、大きな注目を集めている。
それでも、骨格に詳細なボディ情報がないことは性能を制限しているが、他のマルチモーダル手法ではかなりの推論資源が必要であり、トレーニングと推論の段階でマルチモーダルデータを使用する場合、非効率である。
そこで本研究では,マルチモーダル・コラーニング(MMCL)フレームワークを,マルチモーダル・大規模言語モデル(LLM)を,学習段階における多モーダル・コラーニング(マルチモーダル・コラーニング)に係わる効率的な骨格に基づく行動認識のための補助ネットワークとして活用し,推論における簡潔なスケルトンのみを用いることで,効率を保ちながら,補完的なマルチモーダル・コラーニング(MMCL)フレームワークを提案する。
私たちのMMCLフレームワークは主に2つのモジュールで構成されています。
まず、FAM(Feature Alignment Module)は、ビデオフレームからリッチなRGB機能を抽出し、コントラスト学習を通じてグローバルなスケルトン機能と整合させる。
第二に、FRM(Feature Refinement Module)は、時間的情報とテキスト命令を備えたRGBイメージを使用して、マルチモーダルLLMの強力な一般化に基づくインストラクティブな特徴を生成する。
これらのインストラクティブテキストの特徴は、さらに分類スコアを洗練させ、洗練されたスコアは、ソフトラベルに似た方法でモデルの堅牢性と一般化を強化する。
NTU RGB+D, NTU RGB+D 120, Northwestern-UCLAベンチマークに対する大規模な実験は, 既存の骨格に基づく行動認識法よりも優れたMMCLの有効性を一貫して検証している。
一方、UTD-MHADとSYSU-Actionデータセットの実験は、ゼロショットおよびドメイン適応的行動認識におけるMMCLの可換な一般化を実証している。
私たちのコードは、https://github.com/liujf69/MMCL-Action.comで公開されています。
関連論文リスト
- MAGIC++: Efficient and Resilient Modality-Agnostic Semantic Segmentation via Hierarchical Modality Selection [20.584588303521496]
本稿では,効率的なマルチモーダル融合と階層的モダリティ選択のための2つの重要なプラグアンドプレイモジュールからなるMAGIC++フレームワークを紹介する。
本手法は実世界のベンチマークと合成ベンチマークの両方で最先端の性能を実現する。
本手法は, 先行技術よりも大きなマージンで優れる新奇なモダリティ非依存環境において, 優れた手法である。
論文 参考訳(メタデータ) (2024-12-22T06:12:03Z) - USDRL: Unified Skeleton-Based Dense Representation Learning with Multi-Grained Feature Decorrelation [24.90512145836643]
本稿では,特徴デコレーションに基づく統一骨格に基づくDense Representation Learningフレームワークを提案する。
我々のアプローチは現在のSOTA(State-of-the-art)アプローチよりも大幅に優れています。
論文 参考訳(メタデータ) (2024-12-12T12:20:27Z) - Centering the Value of Every Modality: Towards Efficient and Resilient Modality-agnostic Semantic Segmentation [7.797154022794006]
最近の試みでは、RGBのモダリティを中心とみなし、その他を補助的とみなし、2つの枝を持つ非対称なアーキテクチャを生み出している。
本稿では,コンパクトモデルから高性能モデルまで,様々なバックボーンと柔軟にペアリングできるMAGICという新しい手法を提案する。
提案手法は, モデルパラメータを60%削減しつつ, 最先端性能を実現する。
論文 参考訳(メタデータ) (2024-07-16T03:19:59Z) - NoteLLM-2: Multimodal Large Representation Models for Recommendation [71.87790090964734]
大規模言語モデル(LLM)は、テキスト理解や埋め込みタスクにおいて、例外的な習熟度を示している。
マルチモーダル表現のポテンシャル、特にアイテムツーイテム(I2I)レコメンデーションについては、未解明のままである。
本稿では,既存のLLMと視覚エンコーダの統合をカスタマイズし,効率的なマルチモーダル表現を実現するエンド・ツー・エンドのファインチューニング手法を提案する。
論文 参考訳(メタデータ) (2024-05-27T03:24:01Z) - Uni-MoE: Scaling Unified Multimodal LLMs with Mixture of Experts [54.529880848937104]
そこで我々は,MoEアーキテクチャをUni-MoEと呼ぶ一貫したMLLMを開発し,様々なモダリティを扱えるようにした。
具体的には、統一マルチモーダル表現のためのコネクタを持つモダリティ特化エンコーダを特徴とする。
マルチモーダルデータセットの包括的集合を用いた命令調整Uni-MoEの評価を行った。
論文 参考訳(メタデータ) (2024-05-18T12:16:01Z) - Noise-powered Multi-modal Knowledge Graph Representation Framework [52.95468915728721]
マルチモーダル・プレトレーニングの台頭は、統合されたマルチモーダル知識グラフ表現学習フレームワークの必要性を強調している。
モードレベルのノイズマスキングを備えたトランスフォーマーアーキテクチャを用いた新しいSNAG手法を提案する。
提案手法は10個のデータセットにまたがってSOTA性能を実現し,その汎用性を実証する。
論文 参考訳(メタデータ) (2024-03-11T15:48:43Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
教師なしの事前訓練は骨格に基づく行動理解において大きな成功を収めた。
我々はUmURLと呼ばれる統一マルチモーダル非教師なし表現学習フレームワークを提案する。
UmURLは効率的な早期融合戦略を利用して、マルチモーダル機能を単一ストリームで共同でエンコードする。
論文 参考訳(メタデータ) (2023-11-06T13:56:57Z) - Improving Discriminative Multi-Modal Learning with Large-Scale
Pre-Trained Models [51.5543321122664]
本稿では,大規模な事前学習型ユニモーダルモデルを用いて,識別型マルチモーダル学習を向上する方法について検討する。
MMLoRA(Multi-Modal Low-Rank Adaptation Learning)を導入する。
論文 参考訳(メタデータ) (2023-10-08T15:01:54Z) - USER: Unified Semantic Enhancement with Momentum Contrast for Image-Text
Retrieval [115.28586222748478]
Image-Text Retrieval (ITR) は、与えられたクエリに意味のあるターゲットインスタンスを、他のモダリティから検索することを目的としている。
既存のアプローチは通常、2つの大きな制限に悩まされる。
論文 参考訳(メタデータ) (2023-01-17T12:42:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。