論文の概要: Breaking Barriers in Physical-World Adversarial Examples: Improving Robustness and Transferability via Robust Feature
- arxiv url: http://arxiv.org/abs/2412.16958v1
- Date: Sun, 22 Dec 2024 10:34:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:58:15.273175
- Title: Breaking Barriers in Physical-World Adversarial Examples: Improving Robustness and Transferability via Robust Feature
- Title(参考訳): 物理世界対応事例におけるバリアの破壊-ロバスト特性によるロバスト性の向上と伝達性-
- Authors: Yichen Wang, Yuxuan Chou, Ziqi Zhou, Hangtao Zhang, Wei Wan, Shengshan Hu, Minghui Li,
- Abstract要約: ディープニューラルネットワーク(DNN)は物理世界に広く応用されている。
物理世界の逆数例(PAE)は入力に摂動を導入し、モデルの誤った出力を引き起こす。
既存のPAEは、満足のいく攻撃性能と、攻撃効率とステルスネスのバランスのとれない2つの課題に直面します。
- 参考スコア(独自算出の注目度): 12.28423956388208
- License:
- Abstract: As deep neural networks (DNNs) are widely applied in the physical world, many researches are focusing on physical-world adversarial examples (PAEs), which introduce perturbations to inputs and cause the model's incorrect outputs. However, existing PAEs face two challenges: unsatisfactory attack performance (i.e., poor transferability and insufficient robustness to environment conditions), and difficulty in balancing attack effectiveness with stealthiness, where better attack effectiveness often makes PAEs more perceptible. In this paper, we explore a novel perturbation-based method to overcome the challenges. For the first challenge, we introduce a strategy Deceptive RF injection based on robust features (RFs) that are predictive, robust to perturbations, and consistent across different models. Specifically, it improves the transferability and robustness of PAEs by covering RFs of other classes onto the predictive features in clean images. For the second challenge, we introduce another strategy Adversarial Semantic Pattern Minimization, which removes most perturbations and retains only essential adversarial patterns in AEsBased on the two strategies, we design our method Robust Feature Coverage Attack (RFCoA), comprising Robust Feature Disentanglement and Adversarial Feature Fusion. In the first stage, we extract target class RFs in feature space. In the second stage, we use attention-based feature fusion to overlay these RFs onto predictive features of clean images and remove unnecessary perturbations. Experiments show our method's superior transferability, robustness, and stealthiness compared to existing state-of-the-art methods. Additionally, our method's effectiveness can extend to Large Vision-Language Models (LVLMs), indicating its potential applicability to more complex tasks.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)が物理の世界に広く適用されているため、多くの研究は物理世界の敵例(PAE)に焦点を当てており、入力に摂動を導入し、モデルの誤った出力を引き起こす。
しかし、既存のPAEは2つの課題に直面している:不満足な攻撃性能(つまり、環境条件に対する低転送性と不十分なロバスト性)、攻撃効果とステルスネスのバランスをとることの難しさ。
本稿では,この課題を克服するための新しい摂動法について検討する。
最初の課題として、予測的、摂動に頑健で、異なるモデル間で一貫性のある、頑健な特徴(RF)に基づく知覚的RFインジェクションを導入する。
具体的には、クリーン画像の予測機能に対して他のクラスのRFをカバーすることにより、PEEの転送性やロバスト性を向上する。
第2の課題として,2つの戦略に基づいて,2つの戦略に基づいて,ロバスト特徴展開攻撃(RFCoA)を設計し,ほとんどの摂動を排除し,AEに必須の逆数パターンのみを保持するAdversarial Semantic Pattern Minimizationを導入する。
第1段階では,特徴空間内のターゲットクラスRFを抽出する。
第2段階では、注意に基づく特徴融合を用いて、これらのRFをクリーンな画像の予測的特徴にオーバーレイし、不要な摂動を取り除く。
実験により,従来の最先端手法と比較して,トランスファービリティ,ロバスト性,ステルス性に優れることを示した。
さらに,本手法の有効性をLVLM(Large Vision-Language Models)に拡張することで,より複雑なタスクに適用可能であることを示す。
関連論文リスト
- MMAD-Purify: A Precision-Optimized Framework for Efficient and Scalable Multi-Modal Attacks [21.227398434694724]
我々は,攻撃フレームワークの有効性を高めるために,精度最適化ノイズ予測器を組み込んだ革新的なフレームワークを導入する。
当社のフレームワークは,マルチモーダル攻撃に対する最先端のソリューションを提供し,レイテンシの低減を実現している。
本研究の枠組みは, 浄化防御に対する優れた伝達性と堅牢性を実現することを実証する。
論文 参考訳(メタデータ) (2024-10-17T23:52:39Z) - Hide in Thicket: Generating Imperceptible and Rational Adversarial
Perturbations on 3D Point Clouds [62.94859179323329]
3Dポイントクラウド分類のための点操作に基づくアドリアック手法により、3Dモデルの脆弱性を明らかにした。
そこで本研究では,2段階の攻撃領域探索を行うHT-ADV法を提案する。
我々は,良性再サンプリングと良性剛性変換を用いることで,不受容性への犠牲がほとんどなく,身体的敵意の強さをさらに高めることができることを示唆する。
論文 参考訳(メタデータ) (2024-03-08T12:08:06Z) - Suppress and Rebalance: Towards Generalized Multi-Modal Face
Anti-Spoofing [26.901402236963374]
Face Anti-Spoofing (FAS) は、顔認証システムのプレゼンテーション攻撃に対する保護に不可欠である。
多くのマルチモーダルなFASアプローチが出現しているが、見当たらない攻撃や展開条件を一般化する上での課題に直面している。
論文 参考訳(メタデータ) (2024-02-29T16:06:36Z) - The Effectiveness of Random Forgetting for Robust Generalization [21.163070161951868]
我々は,FOMO(Fordt to Mitigate Overfitting)と呼ばれる新しい学習パラダイムを導入する。
FOMOは、重みのサブセットをランダムに忘れる忘れ相と、一般化可能な特徴の学習を強調する再学習相とを交互に扱う。
実験の結果, FOMOは最良と最終ロバストなテスト精度のギャップを大幅に減らし, 頑健なオーバーフィッティングを緩和することがわかった。
論文 参考訳(メタデータ) (2024-02-18T23:14:40Z) - MVPatch: More Vivid Patch for Adversarial Camouflaged Attacks on Object Detectors in the Physical World [7.1343035828597685]
我々は、一般化理論を敵対的パッチ(AP)の文脈に導入する。
本稿では、転送性、ステルス性、実用性を向上させるために、DPBF(Dual-Perception-Based Framework)を提案する。
MVPatchは、デジタルドメインと物理ドメインの両方において、優れた転送可能性と自然な外観を実現し、その有効性とステルス性を強調している。
論文 参考訳(メタデータ) (2023-12-29T01:52:22Z) - Adv-Diffusion: Imperceptible Adversarial Face Identity Attack via Latent
Diffusion Model [61.53213964333474]
本稿では,生の画素空間ではなく,潜在空間における非知覚的対角的アイデンティティ摂動を生成できる統一的なフレームワークAdv-Diffusionを提案する。
具体的には,周囲のセマンティックな摂動を生成するために,個人性に敏感な条件付き拡散生成モデルを提案する。
設計された適応強度に基づく対向摂動アルゴリズムは、攻撃の伝達性とステルス性の両方を確保することができる。
論文 参考訳(メタデータ) (2023-12-18T15:25:23Z) - LEAT: Towards Robust Deepfake Disruption in Real-World Scenarios via
Latent Ensemble Attack [11.764601181046496]
生成モデルによって作成された悪意のある視覚コンテンツであるディープフェイクは、社会にますます有害な脅威をもたらす。
近年のディープフェイクの損傷を積極的に軽減するために, 逆方向の摂動を用いてディープフェイクモデルの出力を妨害する研究が進められている。
そこで本研究では,Latent Ensemble ATtack (LEAT) と呼ばれる簡易かつ効果的なディスラプション手法を提案する。
論文 参考訳(メタデータ) (2023-07-04T07:00:37Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
対向ロバスト性の標準的な方法は、サンプルを最小に摂動させることによって作られたサンプルに対して防御する枠組みを仮定する。
距離学習を用いて、最適輸送問題として逆正則化をフレーム化する。
予備的な結果から, 変分摂動の規則化は, 変分防御と敏感防御の両方を改善することが示唆された。
論文 参考訳(メタデータ) (2022-11-04T13:54:02Z) - Deeper Insights into ViTs Robustness towards Common Corruptions [82.79764218627558]
我々は、CNNのようなアーキテクチャ設計とCNNベースのデータ拡張戦略が、一般的な汚職に対するViTsの堅牢性にどのように影響するかを検討する。
重なり合うパッチ埋め込みと畳み込みフィードフォワードネットワーク(FFN)がロバスト性の向上を実証する。
また、2つの角度から入力値の増大を可能にする新しい条件付き手法も導入する。
論文 参考訳(メタデータ) (2022-04-26T08:22:34Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve
Adversarial Robustness [79.47619798416194]
Learn2Perturbは、ディープニューラルネットワークの対角的堅牢性を改善するために、エンドツーエンドの機能摂動学習アプローチである。
予測最大化にインスパイアされ、ネットワークと雑音パラメータを連続的にトレーニングするために、交互にバックプロパゲーショントレーニングアルゴリズムが導入された。
論文 参考訳(メタデータ) (2020-03-02T18:27:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。