論文の概要: Lies, Damned Lies, and Distributional Language Statistics: Persuasion and Deception with Large Language Models
- arxiv url: http://arxiv.org/abs/2412.17128v1
- Date: Sun, 22 Dec 2024 18:34:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 16:01:15.483485
- Title: Lies, Damned Lies, and Distributional Language Statistics: Persuasion and Deception with Large Language Models
- Title(参考訳): Lies, Damned Lies, and Distributional Language Statistics: Persuasion and Deception with Large Language Models
- Authors: Cameron R. Jones, Benjamin K. Bergen,
- Abstract要約: LLM(Large Language Models)は、人間が書いたテキストと同じくらい説得力のあるコンテンツを生成し、選択的に認識出力を生成することができる。
これらの機能は、これらのシステムがより広くデプロイされるにつれて、潜在的な誤用や意図しない結果に対する懸念を引き起こす。
- 参考スコア(独自算出の注目度): 0.913127392774573
- License:
- Abstract: Large Language Models (LLMs) can generate content that is as persuasive as human-written text and appear capable of selectively producing deceptive outputs. These capabilities raise concerns about potential misuse and unintended consequences as these systems become more widely deployed. This review synthesizes recent empirical work examining LLMs' capacity and proclivity for persuasion and deception, analyzes theoretical risks that could arise from these capabilities, and evaluates proposed mitigations. While current persuasive effects are relatively small, various mechanisms could increase their impact, including fine-tuning, multimodality, and social factors. We outline key open questions for future research, including how persuasive AI systems might become, whether truth enjoys an inherent advantage over falsehoods, and how effective different mitigation strategies may be in practice.
- Abstract(参考訳): LLM(Large Language Models)は、人間が書いたテキストと同じくらい説得力のあるコンテンツを生成し、選択的に認識出力を生成することができる。
これらの機能は、これらのシステムがより広くデプロイされるにつれて、潜在的な誤用や意図しない結果に対する懸念を引き起こす。
本総説では,LSMの能力と誤認の確率を調べた最近の実証研究を要約し,これらの能力から生じる理論的リスクを分析し,その軽減効果を評価する。
現在の説得効果は比較的小さいが、微調整、マルチモダリティ、社会的要因など、様々なメカニズムによって影響が増大する可能性がある。
例えば、説得力のあるAIシステムがどうなるのか、真理が偽りよりも本質的な優位性を持っているのか、そして実際どのようにして異なる緩和戦略が有効であるか、などです。
関連論文リスト
- Persuasion with Large Language Models: a Survey [49.86930318312291]
大規模言語モデル (LLM) は説得力のあるコミュニケーションに新たな破壊的可能性を生み出している。
政治、マーケティング、公衆衛生、電子商取引、慈善事業などの分野では、LLMシステムズは既に人間レベルや超人的説得力を達成している。
LLMをベースとした説得の現在と将来の可能性は、倫理的・社会的リスクを著しく引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2024-11-11T10:05:52Z) - Measuring and Improving Persuasiveness of Large Language Models [12.134372070736596]
本稿ではPersuasionBenchとPersuasionArenaを紹介し,生成モデルの説得性を自動測定する。
我々の発見は、モデル開発者と政策立案者の両方にとって重要な意味を持つ。
論文 参考訳(メタデータ) (2024-10-03T16:36:35Z) - Persuasiveness of Generated Free-Text Rationales in Subjective Decisions: A Case Study on Pairwise Argument Ranking [4.1017420444369215]
主観的回答を伴うタスクにおいて生成した自由文論理を解析する。
我々は、現実世界のアプリケーションにとって大きな可能性を持つ、非常に主観的なタスクであるペアワイズ引数ランキングに焦点を当てる。
以上の結果から,Llama2-70B-chat のオープンソース LLM は高い説得力のある合理化を実現できることが示唆された。
論文 参考訳(メタデータ) (2024-06-20T00:28:33Z) - Improving Factuality and Reasoning in Language Models through Multiagent
Debate [95.10641301155232]
複数の言語モデルインスタンスが共通の最終回答に到達するために、複数のラウンドで個別の応答と推論プロセスを提案し、議論する言語応答を改善するための補完的なアプローチを提案する。
以上の結果から,本手法は様々なタスクにおける数学的・戦略的推論を著しく向上させることが示唆された。
我々のアプローチは、既存のブラックボックスモデルに直接適用され、調査するすべてのタスクに対して、同じ手順とプロンプトを使用することができる。
論文 参考訳(メタデータ) (2023-05-23T17:55:11Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Language Generation Models Can Cause Harm: So What Can We Do About It?
An Actionable Survey [50.58063811745676]
この研究は、言語生成モデルから潜在的脅威や社会的害に対処するための実践的な方法の調査を提供する。
言語生成者のさまざまなリスク・ハームを検知・改善するための戦略の構造化された概要を提示するために、言語モデルリスクのいくつかの先行研究を取り上げる。
論文 参考訳(メタデータ) (2022-10-14T10:43:39Z) - Overcoming Failures of Imagination in AI Infused System Development and
Deployment [71.9309995623067]
NeurIPS 2020は研究論文に「潜在的な悪用と失敗の結果」に関するインパクトステートメントを含むよう要求した。
我々は、害の枠組みは文脈に適応し、潜在的な利害関係者、システム余裕、および最も広い意味での害を評価するための実行可能なプロキシを考える必要があると論じている。
論文 参考訳(メタデータ) (2020-11-26T18:09:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。