論文の概要: On the Generalization Ability of Machine-Generated Text Detectors
- arxiv url: http://arxiv.org/abs/2412.17242v1
- Date: Mon, 23 Dec 2024 03:30:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 16:00:59.885765
- Title: On the Generalization Ability of Machine-Generated Text Detectors
- Title(参考訳): 機械生成テキスト検出器の一般化能力について
- Authors: Yule Liu, Zhiyuan Zhong, Yifan Liao, Zhen Sun, Jingyi Zheng, Jiaheng Wei, Qingyuan Gong, Fenghua Tong, Yang Chen, Yang Zhang, Xinlei He,
- Abstract要約: 大規模言語モデル(LLM)は、機械生成テキスト(MGT)に対する懸念を提起している。
本研究はMGT検出器の3つの側面における一般化能力について検討する。
- 参考スコア(独自算出の注目度): 23.434925348283617
- License:
- Abstract: The rise of large language models (LLMs) has raised concerns about machine-generated text (MGT), including ethical and practical issues like plagiarism and misinformation. Building a robust and highly generalizable MGT detection system has become increasingly important. This work investigates the generalization capabilities of MGT detectors in three aspects: First, we construct MGTAcademic, a large-scale dataset focused on academic writing, featuring human-written texts (HWTs) and MGTs across STEM, Humanities, and Social Sciences, paired with an extensible code framework for efficient benchmarking. Second, we investigate the transferability of detectors across domains and LLMs, leveraging fine-grained datasets to reveal insights into domain transferring and implementing few-shot techniques to improve the performance by roughly 13.2%. Third, we introduce a novel attribution task where models must adapt to new classes over time without (or with very limited) access to prior training data and benchmark detectors. We implement several adapting techniques to improve the performance by roughly 10% and highlight the inherent complexity of the task. Our findings provide insights into the generalization ability of MGT detectors across diverse scenarios and lay the foundation for building robust, adaptive detection systems.
- Abstract(参考訳): 大規模言語モデル (LLMs) の台頭は、機械生成テキスト (MGT) に対する懸念を提起している。
堅牢で高度に一般化可能なMGT検出システムの構築がますます重要になっている。
本稿では,MGT検出器の一般化能力について,3つの側面について検討する。まず,人文テキスト(HWT)とMGTをSTEM,Humanities,Social Sciencesに分散した大規模データセットであるMGTAcademicを,効率的なベンチマークを行うための拡張可能なコードフレームワークと組み合わせて構築する。
第2に、ドメインとLLM間の検出器の転送可能性を調査し、きめ細かいデータセットを活用して、ドメインの転送に関する洞察を明らかにし、約13.2%の性能向上のための少数ショット技術を実装した。
第3に、モデルが事前のトレーニングデータやベンチマーク検出装置に(あるいは非常に限定された)アクセスすることなく、時間とともに新しいクラスに適応しなければならない新しい属性タスクを導入する。
約10%の性能向上を図り、タスク固有の複雑さを強調するために、いくつかの適応手法を実装します。
本研究は,MGT検出器の多種多様なシナリオにおける一般化能力に関する知見を提供し,ロバストで適応的な検出システム構築の基礎を築いた。
関連論文リスト
- Rephrase and Contrast: Fine-Tuning Language Models for Enhanced Understanding of Communication and Computer Networks [13.829525575305206]
本稿では,効率的な微調整フレームワークであるRephrase and Contrast(RaC)フレームワークについて紹介する。
RaCは質問の修正と対照的な分析を取り入れることでLLMの理解と批判的思考能力を高める。
本稿では,RaC微調整のためのデータセットを効率的に構築するために,高品質な質問応答対を生成するためのGPT支援データマイニング法を開発した。
論文 参考訳(メタデータ) (2024-09-21T16:04:43Z) - MatPlotAgent: Method and Evaluation for LLM-Based Agentic Scientific Data Visualization [86.61052121715689]
MatPlotAgentは、科学的データ可視化タスクを自動化するために設計された、モデルに依存しないフレームワークである。
MatPlotBenchは、100人の検証されたテストケースからなる高品質なベンチマークである。
論文 参考訳(メタデータ) (2024-02-18T04:28:28Z) - M4GT-Bench: Evaluation Benchmark for Black-Box Machine-Generated Text Detection [69.41274756177336]
大規模言語モデル (LLMs) は様々なチャネルにまたがる機械生成テキスト (MGT) を前例のない急激な増加をもたらした。
このことは、その潜在的な誤用と社会的意味に関する正当な懸念を提起する。
本稿では,MGT-M4GT-Benchの多言語,マルチドメイン,マルチジェネレータコーパスに基づく新しいベンチマークを提案する。
論文 参考訳(メタデータ) (2024-02-17T02:50:33Z) - TextMachina: Seamless Generation of Machine-Generated Text Datasets [2.4578723416255754]
TextMachinaは、高品質でバイアスのないデータセットの作成を支援するために設計されたPythonフレームワークである。
MGTデータセット構築の固有の複雑さを抽象化する、ユーザフレンドリなパイプラインを提供する。
TextMachinaが生成したデータセットの品質は、以前の研究で評価されている。
論文 参考訳(メタデータ) (2024-01-08T15:05:32Z) - Accelerated materials language processing enabled by GPT [5.518792725397679]
我々は材料言語処理のための生成変換器(GPT)対応パイプラインを開発した。
まず、関連する文書をスクリーニングするためのGPT対応文書分類手法を開発する。
第二に、NERタスクでは、エンティティ中心のプロンプトを設計し、そのほとんどを学習することで、パフォーマンスが改善された。
最後に,GPT対応抽出QAモデルを開発し,性能の向上とアノテーションの自動修正の可能性を示す。
論文 参考訳(メタデータ) (2023-08-18T07:31:13Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
本稿では,Language-Assisted Multi-Modalインストラクションチューニングデータセット,フレームワーク,ベンチマークを提案する。
我々の目標は、MLLMのトレーニングと評価のための成長するエコシステムとしてLAMMを確立することです。
本稿では,2次元および3次元視覚のための広範囲な視覚タスクをカバーする包括的データセットとベンチマークを提案する。
論文 参考訳(メタデータ) (2023-06-11T14:01:17Z) - On the Possibilities of AI-Generated Text Detection [76.55825911221434]
機械が生成するテキストが人間に近い品質を近似するにつれて、検出に必要なサンプルサイズが増大すると主張している。
GPT-2, GPT-3.5-Turbo, Llama, Llama-2-13B-Chat-HF, Llama-2-70B-Chat-HFなどの最先端テキストジェネレータをoBERTa-Large/Base-Detector, GPTZeroなどの検出器に対して試験した。
論文 参考訳(メタデータ) (2023-04-10T17:47:39Z) - MGTBench: Benchmarking Machine-Generated Text Detection [54.81446366272403]
本稿では,強力な大規模言語モデル(LLM)に対するMGT検出のための最初のベンチマークフレームワークを提案する。
一般に単語が多ければ多いほど性能が向上し,ほとんどの検出手法はトレーニングサンプルをはるかに少なくして同様の性能が得られることを示す。
本研究は, テキスト属性タスクにおいて, モデルに基づく検出手法が依然として有効であることを示す。
論文 参考訳(メタデータ) (2023-03-26T21:12:36Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
マルチショット設定のモデル一般化能力を向上させるための3つの手法を検討する。
ラベル付きデータの比率の異なる10の公開nerデータセットについて経験的比較を行う。
マルチショットとトレーニングフリーの両方の設定で最新の結果を作成します。
論文 参考訳(メタデータ) (2020-12-29T23:43:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。