Multi-view Fuzzy Graph Attention Networks for Enhanced Graph Learning
- URL: http://arxiv.org/abs/2412.17271v1
- Date: Mon, 23 Dec 2024 04:39:08 GMT
- Title: Multi-view Fuzzy Graph Attention Networks for Enhanced Graph Learning
- Authors: Jinming Xing, Dongwen Luo, Qisen Cheng, Chang Xue, Ruilin Xing,
- Abstract summary: Fuzzy Graph Attention Network (FGAT) has shown promise in tasks requiring robust graph-based learning.<n>We propose the Multi-view Fuzzy Graph Attention Network (MFGAT), a novel framework that constructs and aggregates multi-view information.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fuzzy Graph Attention Network (FGAT), which combines Fuzzy Rough Sets and Graph Attention Networks, has shown promise in tasks requiring robust graph-based learning. However, existing models struggle to effectively capture dependencies from multiple perspectives, limiting their ability to model complex data. To address this gap, we propose the Multi-view Fuzzy Graph Attention Network (MFGAT), a novel framework that constructs and aggregates multi-view information using a specially designed Transformation Block. This block dynamically transforms data from multiple aspects and aggregates the resulting representations via a weighted sum mechanism, enabling comprehensive multi-view modeling. The aggregated information is fed into FGAT to enhance fuzzy graph convolutions. Additionally, we introduce a simple yet effective learnable global pooling mechanism for improved graph-level understanding. Extensive experiments on graph classification tasks demonstrate that MFGAT outperforms state-of-the-art baselines, underscoring its effectiveness and versatility.
Related papers
- Multi-Relation Graph-Kernel Strengthen Network for Graph-Level Clustering [10.67474681549171]
We propose a novel Multi-Relation Graph- Kernel Strengthen Network for Graph-Level Clustering (MGSN)
MGSN constructs multi-relation graphs to capture diverse semantic relationships between nodes and graphs.
A relation-aware representation refinement strategy is designed, which adaptively aligns multi-relation information across views.
arXiv Detail & Related papers (2025-04-02T11:17:15Z) - UniGraph2: Learning a Unified Embedding Space to Bind Multimodal Graphs [34.48393396390799]
We propose a novel cross-domain graph foundation model that enables general representation learning on multimodal graphs.
UniGraph2 employs modality-specific encoders alongside a graph neural network (GNN) to learn a unified low-dimensional embedding space.
We show that UniGraph2 significantly outperforms state-of-the-art models in tasks such as representation learning, transfer learning, and multimodal generative tasks.
arXiv Detail & Related papers (2025-02-02T14:04:53Z) - Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
We propose a unified evaluation framework for graph-level Graph Neural Networks (GNNs)
This framework provides a standardized setting to evaluate GNNs across diverse datasets.
We also propose a novel GNN model with enhanced expressivity and generalization capabilities.
arXiv Detail & Related papers (2025-01-01T08:48:53Z) - Self-Supervised Graph Neural Networks for Enhanced Feature Extraction in Heterogeneous Information Networks [16.12856816023414]
This paper explores the applications and challenges of graph neural networks (GNNs) in processing complex graph data brought about by the rapid development of the Internet.
By introducing a self-supervisory mechanism, it is expected to improve the adaptability of existing models to the diversity and complexity of graph data.
arXiv Detail & Related papers (2024-10-23T07:14:37Z) - AnyGraph: Graph Foundation Model in the Wild [16.313146933922752]
Graph foundation models offer the potential to learn robust, generalizable representations from graph data.
In this work, we investigate a unified graph model, AnyGraph, designed to handle key challenges.
Our experiments on diverse 38 graph datasets have demonstrated the strong zero-shot learning performance of AnyGraph.
arXiv Detail & Related papers (2024-08-20T09:57:13Z) - OpenGraph: Towards Open Graph Foundation Models [20.401374302429627]
Graph Neural Networks (GNNs) have emerged as promising techniques for encoding structural information.
Key challenge remains: the difficulty of generalizing to unseen graph data with different properties.
We propose a novel graph foundation model, called OpenGraph, to address this challenge.
arXiv Detail & Related papers (2024-03-02T08:05:03Z) - When Graph Data Meets Multimodal: A New Paradigm for Graph Understanding
and Reasoning [54.84870836443311]
The paper presents a new paradigm for understanding and reasoning about graph data by integrating image encoding and multimodal technologies.
This approach enables the comprehension of graph data through an instruction-response format, utilizing GPT-4V's advanced capabilities.
The study evaluates this paradigm on various graph types, highlighting the model's strengths and weaknesses, particularly in Chinese OCR performance and complex reasoning tasks.
arXiv Detail & Related papers (2023-12-16T08:14:11Z) - Towards Graph Self-Supervised Learning with Contrastive Adjusted Zooming [48.99614465020678]
We introduce a novel self-supervised graph representation learning algorithm via Graph Contrastive Adjusted Zooming.
This mechanism enables G-Zoom to explore and extract self-supervision signals from a graph from multiple scales.
We have conducted extensive experiments on real-world datasets, and the results demonstrate that our proposed model outperforms state-of-the-art methods consistently.
arXiv Detail & Related papers (2021-11-20T22:45:53Z) - Multiple Graph Learning for Scalable Multi-view Clustering [26.846642220480863]
We propose an efficient multiple graph learning model via a small number of anchor points and tensor Schatten p-norm minimization.
Specifically, we construct a hidden and tractable large graph by anchor graph for each view.
We develop an efficient algorithm, which scales linearly with the data size, to solve our proposed model.
arXiv Detail & Related papers (2021-06-29T13:10:56Z) - Model-Agnostic Graph Regularization for Few-Shot Learning [60.64531995451357]
We present a comprehensive study on graph embedded few-shot learning.
We introduce a graph regularization approach that allows a deeper understanding of the impact of incorporating graph information between labels.
Our approach improves the performance of strong base learners by up to 2% on Mini-ImageNet and 6.7% on ImageNet-FS.
arXiv Detail & Related papers (2021-02-14T05:28:13Z) - Graph Information Bottleneck [77.21967740646784]
Graph Neural Networks (GNNs) provide an expressive way to fuse information from network structure and node features.
Inheriting from the general Information Bottleneck (IB), GIB aims to learn the minimal sufficient representation for a given task.
We show that our proposed models are more robust than state-of-the-art graph defense models.
arXiv Detail & Related papers (2020-10-24T07:13:00Z) - Multi-view Graph Learning by Joint Modeling of Consistency and
Inconsistency [65.76554214664101]
Graph learning has emerged as a promising technique for multi-view clustering with its ability to learn a unified and robust graph from multiple views.
We propose a new multi-view graph learning framework, which for the first time simultaneously models multi-view consistency and multi-view inconsistency in a unified objective function.
Experiments on twelve multi-view datasets have demonstrated the robustness and efficiency of the proposed approach.
arXiv Detail & Related papers (2020-08-24T06:11:29Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.