Better Knowledge Enhancement for Privacy-Preserving Cross-Project Defect Prediction
- URL: http://arxiv.org/abs/2412.17317v1
- Date: Mon, 23 Dec 2024 06:21:15 GMT
- Title: Better Knowledge Enhancement for Privacy-Preserving Cross-Project Defect Prediction
- Authors: Yuying Wang, Yichen Li, Haozhao Wang, Lei Zhao, Xiaofang Zhang,
- Abstract summary: Cross-Project Defect Prediction (CPDP) poses a non-trivial challenge to construct a reliable defect predictor.
We propose a novel knowledge enhancement approach named FedDP with two simple but effective solutions.
- Score: 14.055440811812295
- License:
- Abstract: Cross-Project Defect Prediction (CPDP) poses a non-trivial challenge to construct a reliable defect predictor by leveraging data from other projects, particularly when data owners are concerned about data privacy. In recent years, Federated Learning (FL) has become an emerging paradigm to guarantee privacy information by collaborative training a global model among multiple parties without sharing raw data. While the direct application of FL to the CPDP task offers a promising solution to address privacy concerns, the data heterogeneity arising from proprietary projects across different companies or organizations will bring troubles for model training. In this paper, we study the privacy-preserving cross-project defect prediction with data heterogeneity under the federated learning framework. To address this problem, we propose a novel knowledge enhancement approach named FedDP with two simple but effective solutions: 1. Local Heterogeneity Awareness and 2. Global Knowledge Distillation. Specifically, we employ open-source project data as the distillation dataset and optimize the global model with the heterogeneity-aware local model ensemble via knowledge distillation. Experimental results on 19 projects from two datasets demonstrate that our method significantly outperforms baselines.
Related papers
- One-shot Federated Learning via Synthetic Distiller-Distillate Communication [63.89557765137003]
One-shot Federated learning (FL) is a powerful technology facilitating collaborative training of machine learning models in a single round of communication.
We propose FedSD2C, a novel and practical one-shot FL framework designed to address these challenges.
arXiv Detail & Related papers (2024-12-06T17:05:34Z) - FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
Federated instruction tuning (FedIT) is a promising solution, by consolidating collaborative training across multiple data owners.
FedIT encounters limitations such as scarcity of instructional data and risk of exposure to training data extraction attacks.
We propose FewFedPIT, designed to simultaneously enhance privacy protection and model performance of federated few-shot learning.
arXiv Detail & Related papers (2024-03-10T08:41:22Z) - Privacy-Enhancing Collaborative Information Sharing through Federated
Learning -- A Case of the Insurance Industry [1.8092553911119764]
The report demonstrates the benefits of harnessing the value of Federated Learning (FL) to learn a single model across multiple insurance industry datasets.
FL addresses two of the most pressing concerns: limited data volume and data variety, which are caused by privacy concerns.
During each round of FL, collaborators compute improvements on the model using their local private data, and these insights are combined to update a global model.
arXiv Detail & Related papers (2024-02-22T21:46:24Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
We propose federated learning with consensus-oriented generation (FedCOG)
FedCOG consists of two key components at the client side: complementary data generation and knowledge-distillation-based model training.
Experiments on classical and real-world FL datasets show that FedCOG consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-12-10T18:49:59Z) - Federated Learning Empowered by Generative Content [55.576885852501775]
Federated learning (FL) enables leveraging distributed private data for model training in a privacy-preserving way.
We propose a novel FL framework termed FedGC, designed to mitigate data heterogeneity issues by diversifying private data with generative content.
We conduct a systematic empirical study on FedGC, covering diverse baselines, datasets, scenarios, and modalities.
arXiv Detail & Related papers (2023-12-10T07:38:56Z) - PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
Federated Learning (FL) has emerged as an effective learning paradigm for distributed computation.
This work proposes a novel FL framework that requires only partial GAN model sharing.
Named as PS-FedGAN, this new framework enhances the GAN releasing and training mechanism to address heterogeneous data distributions.
arXiv Detail & Related papers (2023-05-19T05:39:40Z) - FedPDD: A Privacy-preserving Double Distillation Framework for
Cross-silo Federated Recommendation [4.467445574103374]
Cross-platform recommendation aims to improve recommendation accuracy by gathering heterogeneous features from different platforms.
Such cross-silo collaborations between platforms are restricted by increasingly stringent privacy protection regulations.
We propose a novel privacy-preserving double distillation framework named FedPDD for cross-silo federated recommendation.
arXiv Detail & Related papers (2023-05-09T16:17:04Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Differentially Private Federated Learning on Heterogeneous Data [10.431137628048356]
Federated Learning (FL) is a paradigm for large-scale distributed learning.
It faces two key challenges: (i) efficient training from highly heterogeneous user data, and (ii) protecting the privacy of participating users.
We propose a novel FL approach to tackle these two challenges together by incorporating Differential Privacy (DP) constraints.
arXiv Detail & Related papers (2021-11-17T18:23:49Z) - SPEED: Secure, PrivatE, and Efficient Deep learning [2.283665431721732]
We introduce a deep learning framework able to deal with strong privacy constraints.
Based on collaborative learning, differential privacy and homomorphic encryption, the proposed approach advances state-of-the-art.
arXiv Detail & Related papers (2020-06-16T19:31:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.