論文の概要: Bayesian penalized empirical likelihood and MCMC sampling
- arxiv url: http://arxiv.org/abs/2412.17354v1
- Date: Mon, 23 Dec 2024 07:29:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:56:46.596698
- Title: Bayesian penalized empirical likelihood and MCMC sampling
- Title(参考訳): Bayesian penalized empirical chance and MCMC sample
- Authors: Jinyuan Chang, Cheng Yong Tang, Yuanzheng Zhu,
- Abstract要約: 本稿では,経験的可能性 (EL) に固有の計算課題に対処するため,ベイズ法(Bayesian Penalized Empirical Likelihood, BPEL)と呼ばれる新しい手法を提案する。
提案手法の主な目的は, (i) 多様なモデル条件を収容する際のELの固有の柔軟性を高めること, (ii) 確立されたマルコフ・チェイン・モンテカルロ(MCMC)サンプリングスキームの使用を容易にすることである。
- 参考スコア(独自算出の注目度): 1.3412960492870996
- License:
- Abstract: In this study, we introduce a novel methodological framework called Bayesian Penalized Empirical Likelihood (BPEL), designed to address the computational challenges inherent in empirical likelihood (EL) approaches. Our approach has two primary objectives: (i) to enhance the inherent flexibility of EL in accommodating diverse model conditions, and (ii) to facilitate the use of well-established Markov Chain Monte Carlo (MCMC) sampling schemes as a convenient alternative to the complex optimization typically required for statistical inference using EL. To achieve the first objective, we propose a penalized approach that regularizes the Lagrange multipliers, significantly reducing the dimensionality of the problem while accommodating a comprehensive set of model conditions. For the second objective, our study designs and thoroughly investigates two popular sampling schemes within the BPEL context. We demonstrate that the BPEL framework is highly flexible and efficient, enhancing the adaptability and practicality of EL methods. Our study highlights the practical advantages of using sampling techniques over traditional optimization methods for EL problems, showing rapid convergence to the global optima of posterior distributions and ensuring the effective resolution of complex statistical inference challenges.
- Abstract(参考訳): 本研究では,経験的可能性 (EL) に固有の計算課題に対処する手法として,Bayesian Penalized Empirical Likelihood (BPEL) を提案する。
私たちのアプローチには2つの主な目的があります。
一 多様なモデル条件の調整において、ELの固有の柔軟性を高めること。
(II) 高度に確立されたマルコフ・チェイン・モンテカルロ(MCMC)サンプリングスキームをELを用いた統計的推論に一般的に必要とされる複素最適化の代替として用いることを容易にする。
最初の目的を達成するために,ラグランジュ乗算器を正規化し,モデル条件の包括的集合を収容しながら問題の次元性を著しく低減するペナル化手法を提案する。
第2の目的は、BPELコンテキスト内の2つの一般的なサンプリングスキームを設計し、徹底的に調査することである。
我々は、BPELフレームワークが非常に柔軟で効率的なことを示し、ELメソッドの適応性と実用性を高めます。
本研究は, EL問題に対する従来の最適化手法よりもサンプリング手法を用いることにより, 後方分布の大域的最適性に迅速に収束し, 複雑な統計的推論課題の効果的な解決を確実にすることの実用的利点を強調した。
関連論文リスト
- LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
このフレームワークはMonte Carlo Tree Search (MCTS)と反復的なSelf-Refineを組み合わせて推論パスを最適化する。
このフレームワークは、一般的なベンチマークと高度なベンチマークでテストされており、探索効率と問題解決能力の点で優れた性能を示している。
論文 参考訳(メタデータ) (2024-10-03T18:12:29Z) - Expensive Multi-Objective Bayesian Optimization Based on Diffusion Models [17.19004913553654]
多目的ベイズ最適化(MOBO)は、様々な高価な多目的最適化問題(EMOP)において有望な性能を示した。
高価なMOBOのための合成拡散モデルに基づくパレートセット学習アルゴリズム,すなわちCDM-PSLを提案する。
提案アルゴリズムは,様々な最先端MOBOアルゴリズムと比較して優れた性能が得られる。
論文 参考訳(メタデータ) (2024-05-14T14:55:57Z) - Finite-Time Convergence and Sample Complexity of Actor-Critic Multi-Objective Reinforcement Learning [20.491176017183044]
本稿では多目的強化学習(MORL)問題に取り組む。
MOACと呼ばれる革新的なアクター批判アルゴリズムを導入し、競合する報酬信号間のトレードオフを反復的に行うことでポリシーを見出す。
論文 参考訳(メタデータ) (2024-05-05T23:52:57Z) - Constrained Bayesian Optimization Under Partial Observations: Balanced
Improvements and Provable Convergence [6.461785985849886]
我々は、制約付きベイズ最適化の枠組みの下で、高価なPOCOPの効率的かつ証明可能な手法を設計する。
本稿では,最適化時の平衡探索を取り入れた取得関数の設計を改良した。
部分的に観測可能な制約に対する代理モデルとして異なる確率を埋め込んだガウス過程を提案する。
論文 参考訳(メタデータ) (2023-12-06T01:00:07Z) - Toward Rapid, Optimal, and Feasible Power Dispatch through Generalized
Neural Mapping [0.0]
パワーディスパッチ問題を解決するための学習ベースアプローチとして LOOP-LC 2.0 を提案する。
LOOP-LC 2.0フレームワークの顕著な利点は、ソリューションのほぼ最適性と厳密な実現性を保証する能力である。
本稿では, LOOP-LC 2.0法の有効性を, 学習速度, 計算時間, 最適性, ソリューション実現可能性の観点から示す。
論文 参考訳(メタデータ) (2023-11-08T17:02:53Z) - Sample-Efficient Multi-Agent RL: An Optimization Perspective [103.35353196535544]
一般関数近似に基づく汎用マルコフゲーム(MG)のためのマルチエージェント強化学習(MARL)について検討した。
汎用MGに対するマルチエージェントデカップリング係数(MADC)と呼ばれる新しい複雑性尺度を導入する。
我々のアルゴリズムは既存の研究に匹敵するサブリニアな後悔を与えることを示す。
論文 参考訳(メタデータ) (2023-10-10T01:39:04Z) - GEC: A Unified Framework for Interactive Decision Making in MDP, POMDP,
and Beyond [101.5329678997916]
対話型意思決定の一般的な枠組みの下で, サンプル高能率強化学習(RL)について検討した。
本稿では,探索とエクスプロイトの基本的なトレードオフを特徴付ける,新しい複雑性尺度である一般化エルダー係数(GEC)を提案する。
低 GEC の RL 問題は非常にリッチなクラスであり、これは低ベルマン楕円体次元問題、双線型クラス、低証人ランク問題、PO-双線型クラス、一般化正規PSR を仮定する。
論文 参考訳(メタデータ) (2022-11-03T16:42:40Z) - Revisiting GANs by Best-Response Constraint: Perspective, Methodology,
and Application [49.66088514485446]
ベストレスポンス制約(Best-Response Constraint、BRC)は、ジェネレータのディスクリミネータへの依存性を明示的に定式化する一般的な学習フレームワークである。
モチベーションや定式化の相違があっても, フレキシブルBRC法により, 様々なGANが一様に改善できることが示される。
論文 参考訳(メタデータ) (2022-05-20T12:42:41Z) - Solving Multistage Stochastic Linear Programming via Regularized Linear
Decision Rules: An Application to Hydrothermal Dispatch Planning [77.34726150561087]
AdaSO(Adaptive least absolute shrinkage and selection operator)に基づく線形決定規則(LDR)の新しい正規化手法を提案する。
実験により、MSLPを解くために古典的な非正規化LDRを使用する場合、過度に適合する脅威は無視できないことが示された。
LHDP問題に対しては、非正規化ベンチマークと比較して、提案したフレームワークの次の利点を強調した。
論文 参考訳(メタデータ) (2021-10-07T02:36:14Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。