Uncertainties of Satellite-based Essential Climate Variables from Deep Learning
- URL: http://arxiv.org/abs/2412.17506v1
- Date: Mon, 23 Dec 2024 12:05:22 GMT
- Title: Uncertainties of Satellite-based Essential Climate Variables from Deep Learning
- Authors: Junyang Gou, Arnt-Børre Salberg, Mostafa Kiani Shahvandi, Mohammad J. Tourian, Ulrich Meyer, Eva Boergens, Anders U. Waldeland, Isabella Velicogna, Fredrik Dahl, Adrian Jäggi, Konrad Schindler, Benedikt Soja,
- Abstract summary: This survey explores the types of uncertainties associated with essential climate variables (ECVs) estimated from deep learning and the techniques to quantify them.<n>The focus is on highlighting the importance of quantifying inherent uncertainties in ECV estimates, considering the dynamic and multifaceted nature of climate data.
- Score: 10.804264810132658
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate uncertainty information associated with essential climate variables (ECVs) is crucial for reliable climate modeling and understanding the spatiotemporal evolution of the Earth system. In recent years, geoscience and climate scientists have benefited from rapid progress in deep learning to advance the estimation of ECV products with improved accuracy. However, the quantification of uncertainties associated with the output of such deep learning models has yet to be thoroughly adopted. This survey explores the types of uncertainties associated with ECVs estimated from deep learning and the techniques to quantify them. The focus is on highlighting the importance of quantifying uncertainties inherent in ECV estimates, considering the dynamic and multifaceted nature of climate data. The survey starts by clarifying the definition of aleatoric and epistemic uncertainties and their roles in a typical satellite observation processing workflow, followed by bridging the gap between conventional statistical and deep learning views on uncertainties. Then, we comprehensively review the existing techniques for quantifying uncertainties associated with deep learning algorithms, focusing on their application in ECV studies. The specific need for modification to fit the requirements from both the Earth observation side and the deep learning side in such interdisciplinary tasks is discussed. Finally, we demonstrate our findings with two ECV examples, snow cover and terrestrial water storage, and provide our perspectives for future research.
Related papers
- OKG-LLM: Aligning Ocean Knowledge Graph with Observation Data via LLMs for Global Sea Surface Temperature Prediction [70.48962924608033]
This work presents the first systematic effort to construct an Ocean Knowledge Graph (OKG) specifically designed to represent diverse ocean knowledge for SST prediction.<n>We develop a graph embedding network to learn the comprehensive semantic and structural knowledge within the OKG, capturing both the unique characteristics of individual sea regions and the complex correlations between them. Finally, we align the learned knowledge with fine-grained numerical SST data and leverage a pre-trained LLM to model SST patterns for accurate prediction.
arXiv Detail & Related papers (2025-07-31T02:06:03Z) - Confidence-Filtered Relevance (CFR): An Interpretable and Uncertainty-Aware Machine Learning Framework for Naturalness Assessment in Satellite Imagery [3.846084066763095]
Confidence-Filtered Relevance (CFR) is a data-centric framework that combines LRP Attention Rollout with Deep Deterministic Uncertainty estimation.<n>CFR partitions the dataset into subsets based on uncertainty thresholds, enabling systematic analysis of how uncertainty shapes explanations of naturalness in satellite imagery.<n>As uncertainty increases, the interpretability of relevance heatmaps declines and their entropy grows, indicating less selective and more ambiguous attributions.
arXiv Detail & Related papers (2025-07-17T12:06:08Z) - Identifying Trustworthiness Challenges in Deep Learning Models for Continental-Scale Water Quality Prediction [64.4881275941927]
We present the first comprehensive evaluation of trustworthiness in a continental-scale multi-task LSTM model.
Our investigation uncovers systematic patterns of model performance disparities linked to basin characteristics.
This work serves as a timely call to action for advancing trustworthy data-driven methods for water resources management.
arXiv Detail & Related papers (2025-03-13T01:50:50Z) - Post-hoc Probabilistic Vision-Language Models [51.12284891724463]
Vision-language models (VLMs) have found remarkable success in classification, retrieval, and generative tasks.<n>We propose post-hoc uncertainty estimation in VLMs that does not require additional training.<n>Our results show promise for safety-critical applications of large-scale models.
arXiv Detail & Related papers (2024-12-08T18:16:13Z) - Quantifying uncertainty in climate projections with conformal ensembles [0.0]
Conformal ensembling is a new approach to uncertainty quantification in climate projections based on conformal inference to reduce projection uncertainty.
It can be applied to any climatic variable using any ensemble analysis method.
Experiments show that it is effective when conditioning future projections on historical reanalysis data.
arXiv Detail & Related papers (2024-08-13T05:23:55Z) - Uncertainty Aware Tropical Cyclone Wind Speed Estimation from Satellite Data [1.4431283765171916]
Deep neural networks (DNNs) have been successfully applied to earth observation (EO) data and opened new research avenues.
This work provides a theoretical and quantitative comparison of uncertainty quantification methods for DNNs applied to the task of wind speed estimation in satellite imagery of tropical cyclones.
We find that predictive uncertainties can be utilized to further improve accuracy and analyze the predictive uncertainties of different methods across storm categories.
arXiv Detail & Related papers (2024-04-12T08:35:38Z) - Uncertainty Quantification for Forward and Inverse Problems of PDEs via
Latent Global Evolution [110.99891169486366]
We propose a method that integrates efficient and precise uncertainty quantification into a deep learning-based surrogate model.
Our method endows deep learning-based surrogate models with robust and efficient uncertainty quantification capabilities for both forward and inverse problems.
Our method excels at propagating uncertainty over extended auto-regressive rollouts, making it suitable for scenarios involving long-term predictions.
arXiv Detail & Related papers (2024-02-13T11:22:59Z) - Evidential Deep Learning: Enhancing Predictive Uncertainty Estimation
for Earth System Science Applications [0.32302664881848275]
Evidential deep learning is a technique that extends parametric deep learning to higher-order distributions.
This study compares the uncertainty derived from evidential neural networks to those obtained from ensembles.
We show evidential deep learning models attaining predictive accuracy rivaling standard methods, while robustly quantifying both sources of uncertainty.
arXiv Detail & Related papers (2023-09-22T23:04:51Z) - Deep Ensembles to Improve Uncertainty Quantification of Statistical
Downscaling Models under Climate Change Conditions [0.0]
We propose deep ensembles as a simple method to improve the uncertainty quantification of statistical downscaling models.
Deep ensembles allow for a better risk assessment, highly demanded by sectoral applications to tackle climate change.
arXiv Detail & Related papers (2023-04-27T19:53:18Z) - Scalable Sensitivity and Uncertainty Analysis for Causal-Effect
Estimates of Continuous-Valued Interventions [34.19821413853115]
Estimating the effects of continuous-valued interventions from observational data is critically important in fields such as climate science, healthcare, and economics.
We develop a continuous treatment-effect marginal sensitivity model (CMSM) and derive bounds that agree with both the observed data and a researcher-defined level of hidden confounding.
We introduce a scalable algorithm to derive the bounds and uncertainty-aware deep models to efficiently estimate these bounds for high-dimensional, large-sample observational data.
arXiv Detail & Related papers (2022-04-21T11:15:10Z) - Uncertainty in Data-Driven Kalman Filtering for Partially Known
State-Space Models [84.18625250574853]
We investigate the ability of KalmanNet, a proposed hybrid model-based deep state tracking algorithm, to estimate an uncertainty measure.
We show that the error covariance matrix can be computed based on its internal features, as an uncertainty measure.
We demonstrate that when the system dynamics are known, KalmanNet-which learns its mapping from data without access to the statistics-provides uncertainty similar to that provided by the Kalman filter.
arXiv Detail & Related papers (2021-10-10T08:52:18Z) - Temporal Difference Uncertainties as a Signal for Exploration [76.6341354269013]
An effective approach to exploration in reinforcement learning is to rely on an agent's uncertainty over the optimal policy.
In this paper, we highlight that value estimates are easily biased and temporally inconsistent.
We propose a novel method for estimating uncertainty over the value function that relies on inducing a distribution over temporal difference errors.
arXiv Detail & Related papers (2020-10-05T18:11:22Z) - On the uncertainty of self-supervised monocular depth estimation [52.13311094743952]
Self-supervised paradigms for monocular depth estimation are very appealing since they do not require ground truth annotations at all.
We explore for the first time how to estimate the uncertainty for this task and how this affects depth accuracy.
We propose a novel peculiar technique specifically designed for self-supervised approaches.
arXiv Detail & Related papers (2020-05-13T09:00:55Z) - Uncertainty Quantification for Deep Context-Aware Mobile Activity
Recognition and Unknown Context Discovery [85.36948722680822]
We develop a context-aware mixture of deep models termed the alpha-beta network.
We improve accuracy and F score by 10% by identifying high-level contexts.
In order to ensure training stability, we have used a clustering-based pre-training in both public and in-house datasets.
arXiv Detail & Related papers (2020-03-03T19:35:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.