Evaluation of Bio-Inspired Models under Different Learning Settings For Energy Efficiency in Network Traffic Prediction
- URL: http://arxiv.org/abs/2412.17565v1
- Date: Mon, 23 Dec 2024 13:35:53 GMT
- Title: Evaluation of Bio-Inspired Models under Different Learning Settings For Energy Efficiency in Network Traffic Prediction
- Authors: Theodoros Tsiolakis, Nikolaos Pavlidis, Vasileios Perifanis, Pavlos Efraimidis,
- Abstract summary: This study investigates the potential of two bio-inspired models: Spiking Neural Networks (SNNs) and Reservoir Computing through Echo State Networks (ESNs) for cellular traffic forecasting.
The evaluation focuses on both their predictive performance and energy efficiency.
- Score: 0.0
- License:
- Abstract: Cellular traffic forecasting is a critical task that enables network operators to efficiently allocate resources and address anomalies in rapidly evolving environments. The exponential growth of data collected from base stations poses significant challenges to processing and analysis. While machine learning (ML) algorithms have emerged as powerful tools for handling these large datasets and providing accurate predictions, their environmental impact, particularly in terms of energy consumption, is often overlooked in favor of their predictive capabilities. This study investigates the potential of two bio-inspired models: Spiking Neural Networks (SNNs) and Reservoir Computing through Echo State Networks (ESNs) for cellular traffic forecasting. The evaluation focuses on both their predictive performance and energy efficiency. These models are implemented in both centralized and federated settings to analyze their effectiveness and energy consumption in decentralized systems. Additionally, we compare bio-inspired models with traditional architectures, such as Convolutional Neural Networks (CNNs) and Multi-Layer Perceptrons (MLPs), to provide a comprehensive evaluation. Using data collected from three diverse locations in Barcelona, Spain, we examine the trade-offs between predictive accuracy and energy demands across these approaches. The results indicate that bio-inspired models, such as SNNs and ESNs, can achieve significant energy savings while maintaining predictive accuracy comparable to traditional architectures. Furthermore, federated implementations were tested to evaluate their energy efficiency in decentralized settings compared to centralized systems, particularly in combination with bio-inspired models. These findings offer valuable insights into the potential of bio-inspired models for sustainable and privacy-preserving cellular traffic forecasting.
Related papers
- L-SFAN: Lightweight Spatially-focused Attention Network for Pain Behavior Detection [44.016805074560295]
Chronic Low Back Pain (CLBP) afflicts millions globally, significantly impacting individuals' well-being and imposing economic burdens on healthcare systems.
While artificial intelligence (AI) and deep learning offer promising avenues for analyzing pain-related behaviors to improve rehabilitation strategies, current models, including convolutional neural networks (CNNs), have limitations.
We introduce hbox EmoL-SFAN, a lightweight CNN architecture incorporating 2D filters designed to capture the spatial-temporal interplay of data from motion capture and surface electromyography sensors.
arXiv Detail & Related papers (2024-06-07T12:01:37Z) - Advancing Spiking Neural Networks for Sequential Modeling with Central Pattern Generators [47.371024581669516]
Spiking neural networks (SNNs) represent a promising approach to developing artificial neural networks.
Applying SNNs to sequential tasks, such as text classification and time-series forecasting, has been hindered by the challenge of creating an effective and hardware-friendly spike-form positional encoding strategy.
We propose a novel PE technique for SNNs, termed CPG-PE. We demonstrate that the commonly used sinusoidal PE is mathematically a specific solution to the membrane potential dynamics of a particular CPG.
arXiv Detail & Related papers (2024-05-23T09:39:12Z) - Data-driven Energy Efficiency Modelling in Large-scale Networks: An Expert Knowledge and ML-based Approach [8.326834499339107]
This paper introduces the simulated reality of communication networks (SRCON) framework.
It harnesses live network data and employs a blend of machine learning (ML)- and expert-based models.
Results show significant gains over a state-of-the art method used by a operator for network energy efficiency modeling.
arXiv Detail & Related papers (2023-12-31T10:03:08Z) - Improving the Accuracy and Interpretability of Neural Networks for Wind
Power Forecasting [42.640766130080415]
This paper firstly proposes simple but effective triple optimization strategies (TriOpts) to accelerate the training process.
Then, permutation feature importance (PFI) and local interpretable model-agnostic explanation (LIME) techniques are presented to interpret forecasted behaviors of DNNs.
arXiv Detail & Related papers (2023-12-25T14:29:09Z) - Towards Energy-Aware Federated Traffic Prediction for Cellular Networks [2.360352205004026]
We propose a novel sustainability indicator that allows assessing the feasibility of machine learning (ML) models.
We evaluate state-of-the-art deep learning (DL) architectures in a federated scenario using real-world measurements from base station (BS) sites in the area of Barcelona, Spain.
Our findings indicate that larger ML models achieve marginally improved performance but have a significant environmental impact in terms of carbon footprint.
arXiv Detail & Related papers (2023-09-19T14:28:09Z) - FedWOA: A Federated Learning Model that uses the Whale Optimization
Algorithm for Renewable Energy Prediction [0.0]
This paper introduces FedWOA, a novel federated learning model that aggregate global prediction models from the weights of local neural network models trained on prosumer energy data.
The evaluation results on prosumers energy data have shown that FedWOA can effectively enhance the accuracy of energy prediction models accuracy by 25% for MSE and 16% for MAE compared to FedAVG.
arXiv Detail & Related papers (2023-09-19T05:44:18Z) - Renewable energy management in smart home environment via forecast
embedded scheduling based on Recurrent Trend Predictive Neural Network [0.0]
This paper proposes an advanced ML algorithm, called Recurrent Trend Predictive Neural Network based Forecast Embedded Scheduling (rTPNN-FES)
rTPNN-FES is a novel neural network architecture that simultaneously forecasts renewable energy generation and schedules household appliances.
By its embedded structure, rTPNN-FES eliminates the utilization of separate algorithms for forecasting and scheduling and generates a schedule that is robust against forecasting errors.
arXiv Detail & Related papers (2023-07-04T10:18:16Z) - Evaluating Distribution System Reliability with Hyperstructures Graph
Convolutional Nets [74.51865676466056]
We show how graph convolutional networks and hyperstructures representation learning framework can be employed for accurate, reliable, and computationally efficient distribution grid planning.
Our numerical experiments show that the proposed Hyper-GCNNs approach yields substantial gains in computational efficiency.
arXiv Detail & Related papers (2022-11-14T01:29:09Z) - Preference Enhanced Social Influence Modeling for Network-Aware Cascade
Prediction [59.221668173521884]
We propose a novel framework to promote cascade size prediction by enhancing the user preference modeling.
Our end-to-end method makes the user activating process of information diffusion more adaptive and accurate.
arXiv Detail & Related papers (2022-04-18T09:25:06Z) - Adaptive network reliability analysis: Methodology and applications to
power grid [0.0]
This study presents the first adaptive surrogate-based Network Reliability Analysis using Bayesian Additive Regression Trees (ANR-BART)
Results indicate that ANR-BART is robust and yields accurate estimates of network failure probability, while significantly reducing the computational cost of reliability analysis.
arXiv Detail & Related papers (2021-09-11T19:58:08Z) - On Energy-Based Models with Overparametrized Shallow Neural Networks [44.74000986284978]
Energy-based models (EBMs) are a powerful framework for generative modeling.
In this work we focus on shallow neural networks.
We show that models trained in the so-called "active" regime provide a statistical advantage over their associated "lazy" or kernel regime.
arXiv Detail & Related papers (2021-04-15T15:34:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.