論文の概要: Leveraging Memory Retrieval to Enhance LLM-based Generative Recommendation
- arxiv url: http://arxiv.org/abs/2412.17593v1
- Date: Mon, 23 Dec 2024 14:10:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:55:24.830057
- Title: Leveraging Memory Retrieval to Enhance LLM-based Generative Recommendation
- Title(参考訳): LLMに基づくジェネレーティブレコメンデーションの強化のためのメモリ検索の活用
- Authors: Chengbing Wang, Yang Zhang, Fengbin Zhu, Jizhi Zhang, Tianhao Shi, Fuli Feng,
- Abstract要約: LLM(Large Language Models)は、アイテム生成にユーザとイテムのインタラクション履歴を利用することができる。
本稿では,メモリの長期的関心を記憶するための新しい自動記憶検索フレームワーク(Automated Memory-Retrieval framework, AutoMR)を提案する。
- 参考スコア(独自算出の注目度): 31.252744207805556
- License:
- Abstract: Leveraging Large Language Models (LLMs) to harness user-item interaction histories for item generation has emerged as a promising paradigm in generative recommendation. However, the limited context window of LLMs often restricts them to focusing on recent user interactions only, leading to the neglect of long-term interests involved in the longer histories. To address this challenge, we propose a novel Automatic Memory-Retrieval framework (AutoMR), which is capable of storing long-term interests in the memory and extracting relevant information from it for next-item generation within LLMs. Extensive experimental results on two real-world datasets demonstrate the effectiveness of our proposed AutoMR framework in utilizing long-term interests for generative recommendation.
- Abstract(参考訳): 大規模言語モデル(LLM)を活用して、アイテム生成のためのユーザとイテムのインタラクション履歴を活用することが、ジェネレーティブレコメンデーションにおいて有望なパラダイムとして浮上している。
しかし、LLMの限られたコンテキストウィンドウは、しばしば最近のユーザーインタラクションのみに焦点を当てることを制限しており、長い歴史にかかわる長期的な関心を無視している。
この課題に対処するため,我々は,LLM内の次世代のために,メモリ内の長期的関心を記憶し,関連する情報を抽出することのできる,新しい自動記憶検索フレームワーク(Automatic Memory-Retrieval framework, AutoMR)を提案する。
2つの実世界のデータセットに対する大規模な実験結果から,提案するAutoMRフレームワークが長期的関心を生かして生成的推薦に有効であることを実証した。
関連論文リスト
- Beyond Retrieval: Generating Narratives in Conversational Recommender Systems [4.73461454584274]
本稿では,会話レコメンデーションにおける自然言語生成タスクのための新しいデータセット(REGEN)を提案する。
我々は、よく知られた生成指標を用いてベンチマークを作成し、レーダLEMを用いて新しいデータセットの自動評価を行う。
そして、私たちの知る限りでは、レコメンデーター信号を理解し、リッチな物語を生成することにおけるLLMの能力を分析する最初の試みである。
論文 参考訳(メタデータ) (2024-10-22T07:53:41Z) - Beyond Inter-Item Relations: Dynamic Adaption for Enhancing LLM-Based Sequential Recommendation [83.87767101732351]
逐次リコメンデータシステム(SRS)は,ユーザの過去のインタラクションシーケンスに基づいて,ユーザが好む次の項目を予測する。
様々なAIアプリケーションにおける大規模言語モデル(LLM)の台頭に触発されて、LLMベースのSRSの研究が急増している。
我々は,大きめの粒度適応の上に構築された逐次レコメンデーションモデルであるDARecを提案する。
論文 参考訳(メタデータ) (2024-08-14T10:03:40Z) - LLMs for User Interest Exploration in Large-scale Recommendation Systems [16.954465544444766]
従来のレコメンデーションシステムは、過去のユーザとイテムのインタラクションから学び、強化することで、強いフィードバックループを受ける。
本稿では,Large Language Models(LLM)と古典的レコメンデーションモデルを組み合わせたハイブリッド階層型フレームワークを提案する。
数十億のユーザを対象とする産業規模の商用プラットフォーム上で,このアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2024-05-25T21:57:36Z) - Improve Temporal Awareness of LLMs for Sequential Recommendation [61.723928508200196]
大規模言語モデル(LLM)は、幅広い汎用タスクを解く際、印象的なゼロショット能力を示した。
LLMは時間的情報の認識と利用に不足しており、シーケンシャルなデータの理解を必要とするタスクではパフォーマンスが悪い。
LLMに基づくシーケンシャルレコメンデーションのために、歴史的相互作用の中で時間情報を利用する3つのプロンプト戦略を提案する。
論文 参考訳(メタデータ) (2024-05-05T00:21:26Z) - Personalized LLM Response Generation with Parameterized Memory Injection [19.417549781029233]
大規模言語モデル(LLM)は、自然言語の理解と生成に優れた能力を発揮している。
パーソナライズされたLSM応答生成は、医療などの重要な分野の個人に多大な利益をもたらす可能性がある。
論文 参考訳(メタデータ) (2024-04-04T16:20:34Z) - GenRec: Large Language Model for Generative Recommendation [41.22833600362077]
本稿では,テキストデータに基づく大規模言語モデル(LLM)を用いたレコメンデーションシステムに対する革新的なアプローチを提案する。
GenRecはLLMの理解機能を使ってコンテキストを解釈し、ユーザの好みを学習し、関連するレコメンデーションを生成する。
本研究は,レコメンデーションシステムの領域に革命をもたらす上で,LLMに基づくジェネレーティブレコメンデーションの可能性を明らかにするものである。
論文 参考訳(メタデータ) (2023-07-02T02:37:07Z) - RET-LLM: Towards a General Read-Write Memory for Large Language Models [53.288356721954514]
RET-LLMは、大規模な言語モデルに一般的な読み書きメモリユニットを装備する新しいフレームワークである。
デビッドソンのセマンティクス理論に触発され、三重項の形で知識を抽出し保存する。
本フレームワークは,時間に基づく質問応答タスクの処理において,堅牢な性能を示す。
論文 参考訳(メタデータ) (2023-05-23T17:53:38Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteRにより、RMはLLM生成した知識コレクションを使用してクエリの知識を拡張することができる。
InteRは、最先端手法と比較して総合的に優れたゼロショット検索性能を実現する。
論文 参考訳(メタデータ) (2023-05-12T11:58:15Z) - Enhancing Large Language Model with Self-Controlled Memory Framework [56.38025154501917]
大きな言語モデル(LLM)は、長い入力を処理できないため、重要な歴史的情報が失われる。
本稿では,LLMが長期記憶を維持し,関連する情報をリコールする能力を高めるための自己制御メモリ(SCM)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-26T07:25:31Z) - Sequential Recommender via Time-aware Attentive Memory Network [67.26862011527986]
本稿では,注意機構と繰り返し単位を改善するための時間ゲーティング手法を提案する。
また,長期と短期の嗜好を統合するマルチホップ・タイムアウェア・アテンテーティブ・メモリ・ネットワークを提案する。
提案手法は,候補探索タスクに対してスケーラブルであり,ドット積に基づくTop-Kレコメンデーションのための潜在因数分解の非線形一般化とみなすことができる。
論文 参考訳(メタデータ) (2020-05-18T11:29:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。