論文の概要: Graph Neural Networks Are Evolutionary Algorithms
- arxiv url: http://arxiv.org/abs/2412.17629v1
- Date: Mon, 23 Dec 2024 15:06:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 16:01:40.355711
- Title: Graph Neural Networks Are Evolutionary Algorithms
- Title(参考訳): グラフニューラルネットワークは進化的アルゴリズムである
- Authors: Kaichen Ouyang, Shengwei Fu,
- Abstract要約: Graph Neural Evolution(GNE)は、グラフ内のノードとして個人をモデル化する新しい進化アルゴリズムである。
GNEは、GA、DE、CMA-ES、SDAES、RL-SHADEといった最先端のアルゴリズムを一貫して上回っている。
GNEはEAとGNNを結びつける概念的および数学的基盤を確立し、両方の分野に新たな視点を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In this paper, we reveal the intrinsic duality between graph neural networks (GNNs) and evolutionary algorithms (EAs), bridging two traditionally distinct fields. Building on this insight, we propose Graph Neural Evolution (GNE), a novel evolutionary algorithm that models individuals as nodes in a graph and leverages designed frequency-domain filters to balance global exploration and local exploitation. Through the use of these filters, GNE aggregates high-frequency (diversity-enhancing) and low-frequency (stability-promoting) information, transforming EAs into interpretable and tunable mechanisms in the frequency domain. Extensive experiments on benchmark functions demonstrate that GNE consistently outperforms state-of-the-art algorithms such as GA, DE, CMA-ES, SDAES, and RL-SHADE, excelling in complex landscapes, optimal solution shifts, and noisy environments. Its robustness, adaptability, and superior convergence highlight its practical and theoretical value. Beyond optimization, GNE establishes a conceptual and mathematical foundation linking EAs and GNNs, offering new perspectives for both fields. Its framework encourages the development of task-adaptive filters and hybrid approaches for EAs, while its insights can inspire advances in GNNs, such as improved global information propagation and mitigation of oversmoothing. GNE's versatility extends to solving challenges in machine learning, including hyperparameter tuning and neural architecture search, as well as real-world applications in engineering and operations research. By uniting the dynamics of EAs with the structural insights of GNNs, this work provides a foundation for interdisciplinary innovation, paving the way for scalable and interpretable solutions to complex optimization problems.
- Abstract(参考訳): 本稿では,グラフニューラルネットワーク(GNN)と進化的アルゴリズム(EA)の固有双対性を明らかにする。
この知見に基づいて、我々はグラフ内のノードとして個人をモデル化し、グローバルな探索と局所的な利用のバランスをとるために設計された周波数領域フィルタを利用する新しい進化的アルゴリズムであるグラフニューラル進化(GNE)を提案する。
これらのフィルタを用いることで、GNEは高周波(ダイバーシティ・エンハンシング)および低周波(安定性・プロモーティング)情報を集約し、EAを周波数領域の解釈可能な、調整可能なメカニズムに変換する。
ベンチマーク関数に関する大規模な実験により、GNEはGA、DE、CMA-ES、SDAES、RL-SHADEといった最先端のアルゴリズムを一貫して上回り、複雑な景観、最適解シフト、ノイズの多い環境に優れていた。
その堅牢性、適応性、および優れた収束は、その実用的および理論的価値を強調している。
最適化以外にも、GNEはEAとGNNを結びつける概念的および数学的基盤を確立し、両方の分野に新たな視点を提供する。
その枠組みは、EAのためのタスク適応型フィルタとハイブリッドアプローチの開発を奨励し、その洞察は、グローバルな情報伝達の改善や過密化の緩和など、GNNの進歩を刺激することができる。
GNEの汎用性は、ハイパーパラメータチューニングやニューラルアーキテクチャ検索など、マシンラーニングの課題の解決や、エンジニアリングや運用研究における現実的な応用にまで拡張されている。
EAのダイナミクスとGNNの構造的洞察を結合することにより、この研究は、複雑な最適化問題に対するスケーラブルで解釈可能なソリューションの道を開く、学際的なイノベーションの基礎を提供する。
関連論文リスト
- On the Convergence of (Stochastic) Gradient Descent for Kolmogorov--Arnold Networks [56.78271181959529]
Kolmogorov--Arnold Networks (KAN) はディープラーニングコミュニティで注目されている。
実験により、勾配降下(SGD)により最適化されたカンが、ほぼゼロに近い訓練損失を達成できることが示された。
論文 参考訳(メタデータ) (2024-10-10T15:34:10Z) - Enabling Accelerators for Graph Computing [0.0]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学ぶための新しいパラダイムを提供する。
GNNは従来のニューラルネットワークと比較して新しい計算課題を提示している。
この論文は、GNNが基盤となるハードウェアとどのように相互作用するかをよりよく理解することを目的としている。
論文 参考訳(メタデータ) (2023-12-16T23:31:20Z) - Attentional Graph Neural Networks for Robust Massive Network
Localization [20.416879207269446]
グラフニューラルネットワーク(GNN)は、機械学習における分類タスクの顕著なツールとして登場した。
本稿では,GNNとアテンション機構を統合し,ネットワークローカライゼーションという難解な非線形回帰問題に対処する。
我々はまず,厳密な非視線(NLOS)条件下でも例外的な精度を示すグラフ畳み込みネットワーク(GCN)に基づく新しいネットワークローカライゼーション手法を提案する。
論文 参考訳(メタデータ) (2023-11-28T15:05:13Z) - GNN-based physics solver for time-independent PDEs [1.7616042687330642]
時間に依存しない問題は、正確な予測を得るために、計算領域全体にわたる情報の長距離交換を必要とするという課題を生じさせる。
この課題を克服するために、Edge Augmented GNNとMulti-GNNの2つのグラフニューラルネットワーク(GNN)を提案する。
両ネットワークは,時間非依存の固体力学問題に適用した場合,ベースライン法よりも(1.5~2の係数で)有意に優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2023-03-28T02:04:43Z) - GNN at the Edge: Cost-Efficient Graph Neural Network Processing over
Distributed Edge Servers [24.109721494781592]
グラフニューラルネットワーク(GNN)はまだ探索中であり、その広範な採用に対する大きな違いを示している。
本稿では,多層ヘテロジニアスエッジネットワーク上での分散GNN処理のコスト最適化について検討する。
提案手法は, 高速収束速度で95.8%以上のコスト削減を行い, デファクトベースラインよりも優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2022-10-31T13:03:16Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
グラフニューラルネットワーク(GNN)は、グラフ機械学習における有望なパフォーマンスについて、広範な研究の注目を集めている。
GCNやGPRGNNのような既存のアプローチは、テストグラフ上のホモフィリな変化に直面しても堅牢ではない。
偶数多項式グラフフィルタに対応するスペクトルGNNであるEvenNetを提案する。
論文 参考訳(メタデータ) (2022-05-27T10:48:14Z) - Result Diversification by Multi-objective Evolutionary Algorithms with
Theoretical Guarantees [94.72461292387146]
両目的探索問題として結果の多様化問題を再構成し,多目的進化アルゴリズム(EA)を用いて解くことを提案する。
GSEMOが最適時間近似比1/2$を達成できることを理論的に証明する。
目的関数が動的に変化すると、GSEMOはこの近似比をランニングタイムで維持することができ、Borodinらによって提案されたオープンな問題に対処する。
論文 参考訳(メタデータ) (2021-10-18T14:00:22Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
本稿では、入力グラフと下流タスクに基づいて最適な曲率を適応的に学習する適応曲率探索ハイパーボリックグラフニューラルネットワークACE-HGNNを提案する。
複数の実世界のグラフデータセットの実験は、競争性能と優れた一般化能力を備えたモデル品質において、顕著で一貫したパフォーマンス改善を示す。
論文 参考訳(メタデータ) (2021-10-15T07:18:57Z) - Interpreting and Unifying Graph Neural Networks with An Optimization
Framework [47.44773358082203]
グラフニューラルネットワーク(GNN)は、グラフ構造化データ学習に大きな注目を集めている。
本稿では,異なる伝搬機構と統一最適化問題との驚くほどの関連性を確立する。
提案する統一最適化フレームワークは,いくつかの代表的GNN間の共通性を要約し,柔軟に新しいGNNを設計する新たな機会を開く。
論文 参考訳(メタデータ) (2021-01-28T08:06:02Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
グラフニューラルネットワーク(GNN)は、局所的なグラフ構造をモデル化し、隣人からの情報を集約することで階層的なパターンを捉えることを目的としている。
複雑なグラフとスパースな特徴を与えられた各ノードに対して効果的なアグリゲーション戦略を開発することは難しい課題である。
本稿では,GNNのサンプリング手順とメッセージパッシングを複合学習プロセスにモデル化するメタ政治フレームワークであるPolicy-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-26T17:03:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。