論文の概要: In Defence of Post-hoc Explainability
- arxiv url: http://arxiv.org/abs/2412.17883v1
- Date: Mon, 23 Dec 2024 06:22:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:56:18.900742
- Title: In Defence of Post-hoc Explainability
- Title(参考訳): ホック後の説明責任の擁護
- Authors: Nick Oh,
- Abstract要約: 我々は、科学AIにおけるポストホック解釈可能性の哲学的枠組みとして計算補間主義(CI)を紹介した。
ポストホック合理化が信頼性のあるパフォーマンスと共存する人間の専門知識と平行して描くことで、CIは経験的検証によって適切に拘束された場合、構造化されたモデル解釈を通じて科学的知識が生まれることを証明している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The widespread adoption of machine learning in scientific research has created a fundamental tension between model opacity and scientific understanding. Whilst some advocate for intrinsically interpretable models, we introduce Computational Interpretabilism (CI) as a philosophical framework for post-hoc interpretability in scientific AI. Drawing parallels with human expertise, where post-hoc rationalisation coexists with reliable performance, CI establishes that scientific knowledge emerges through structured model interpretation when properly bounded by empirical validation. Through mediated understanding and bounded factivity, we demonstrate how post-hoc methods achieve epistemically justified insights without requiring complete mechanical transparency, resolving tensions between model complexity and scientific comprehension.
- Abstract(参考訳): 科学研究における機械学習の普及は、モデル不透明度と科学的理解の間に根本的な緊張を生んでいる。
本質的に解釈可能なモデルを支持する者もいますが、科学AIにおけるポストホック解釈可能性の哲学的枠組みとして計算補間主義(CI)を導入します。
ポストホック合理化が信頼性のあるパフォーマンスと共存する人間の専門知識と平行して描くことで、CIは経験的検証によって適切に拘束された場合、構造化されたモデル解釈を通じて科学的知識が生まれることを証明している。
本研究では, モデル複雑性と科学的理解の間の緊張を解消し, 完全な機械的透明性を必要とせずに, ポストホック法が認識論的に正当化された洞察をいかに達成するかを実証する。
関連論文リスト
- Towards a Formal Theory of the Need for Competence via Computational Intrinsic Motivation [6.593505830504729]
我々は、自己決定理論(SDT)における「能力の必要性」に焦点をあてる。
我々は、強化学習(RL)の分野から計算モデルを描くことにより、これらの矛盾が軽減される可能性を示唆する。
我々の研究は、理論の側面を定式化した新しい計算モデルを導入し、理論を洗練させるために実験的にテストできる理論開発のサイクルを支援することができる。
論文 参考訳(メタデータ) (2025-02-11T10:03:40Z) - Causal Representation Learning from Multimodal Biological Observations [57.00712157758845]
我々は,マルチモーダルデータに対するフレキシブルな識別条件の開発を目指している。
我々は、各潜伏成分の識別可能性を保証するとともに、サブスペース識別結果を事前の作業から拡張する。
我々の重要な理論的要素は、異なるモーダル間の因果関係の構造的空間性である。
論文 参考訳(メタデータ) (2024-11-10T16:40:27Z) - Learning Discrete Concepts in Latent Hierarchical Models [73.01229236386148]
自然の高次元データから学習する概念は、ヒューマンアライメントと解釈可能な機械学習モデルの構築の可能性を秘めている。
我々は概念を階層的因果モデルを通して関連付けられた離散潜在因果変数として定式化する。
我々は、理論的な主張を合成データ実験で裏付ける。
論文 参考訳(メタデータ) (2024-06-01T18:01:03Z) - LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery [141.39722070734737]
本稿では,大規模言語モデルの知識駆動型抽象推論能力をシミュレーションの計算力で強化することを提案する。
本稿では,2段階最適化フレームワークであるSGA(Scientific Generative Agent)を紹介する。
法発見と分子設計における枠組みの有効性を実証するための実験を行った。
論文 参考訳(メタデータ) (2024-05-16T03:04:10Z) - Diverse Explanations From Data-Driven and Domain-Driven Perspectives in the Physical Sciences [4.442043151145212]
このパースペクティブは、物理科学における機械学習応用における多様な説明の源泉と意味を探求する。
モデル, 説明方法, 特徴属性レベル, 利害関係者のニーズが, ML出力の様々な解釈をもたらすかを検討する。
我々の分析は、科学的な文脈でMLモデルを解釈する際に、複数の視点を考慮することの重要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-02-01T05:28:28Z) - Approach to Toric Code Anyon Excitation, Indirect Effects of Kitaev Spin
in Local Social Opinion Models [0.0]
最近の研究は、グラフ状態、安定化状態、トーリック符号といった量子情報理論の概念を統合している。
これらの応用は複雑さ、解釈、実証的検証の課題に直面している。
その可能性にもかかわらず、オピニオン・ダイナミクスにおけるトーリック・コード・ハミルトンの実践的な使用にはさらなる探索と研究が必要である。
論文 参考訳(メタデータ) (2023-12-02T20:25:42Z) - Targeted Reduction of Causal Models [55.11778726095353]
因果表現学習(Causal Representation Learning)は、シミュレーションで解釈可能な因果パターンを明らかにするための有望な道を提供する。
本稿では、複雑な相互作用可能なモデルを因果因子の簡潔な集合に凝縮する方法であるTCR(Targeted Causal Reduction)を紹介する。
複雑なモデルから解釈可能な高レベルな説明を生成する能力は、玩具や機械システムで実証されている。
論文 参考訳(メタデータ) (2023-11-30T15:46:22Z) - AI Research Associate for Early-Stage Scientific Discovery [1.6861004263551447]
人工知能(AI)は科学活動に何十年も使われ続けている。
我々は、最小バイアスの物理に基づくモデリングに基づく、初期段階の科学的発見のためのAI研究アソシエイトを提案する。
論文 参考訳(メタデータ) (2022-02-02T17:05:52Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
本稿では,データ駆動型アプローチと知識駆動型アプローチの強みを組み合わせたフレームワークとして,ハイブリッドAI手法を提案する。
具体的には、知識ベースを用いて深層ニューラルネットワークの学習過程を導く方法として、ニューロシンボリズムの概念を継承する。
論文 参考訳(メタデータ) (2020-03-09T15:04:07Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。