論文の概要: More than Chit-Chat: Developing Robots for Small-Talk Interactions
- arxiv url: http://arxiv.org/abs/2412.18023v1
- Date: Mon, 23 Dec 2024 22:35:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:54:03.900347
- Title: More than Chit-Chat: Developing Robots for Small-Talk Interactions
- Title(参考訳): Chit-Chat以上のもの - 小話対話ロボットの開発
- Authors: Rebecca Ramnauth, Dražen Brščić, Brian Scassellati,
- Abstract要約: スモールトークは、社会的ダイナミクスにおいて重要な役割を担い、ラプポートの構築と理解のための言葉による握手として機能する。
会話型AIとソーシャルロボットでは、小さな会話に参加する能力は社会的可能性を高める。
フィードバックを自律的に生成し、LLM生成応答を小さな話の慣行と一致させる新しい手法を提案する。
- 参考スコア(独自算出の注目度): 1.9116784879310025
- License:
- Abstract: Beyond mere formality, small talk plays a pivotal role in social dynamics, serving as a verbal handshake for building rapport and understanding. For conversational AI and social robots, the ability to engage in small talk enhances their perceived sociability, leading to more comfortable and natural user interactions. In this study, we evaluate the capacity of current Large Language Models (LLMs) to drive the small talk of a social robot and identify key areas for improvement. We introduce a novel method that autonomously generates feedback and ensures LLM-generated responses align with small talk conventions. Through several evaluations -- involving chatbot interactions and human-robot interactions -- we demonstrate the system's effectiveness in guiding LLM-generated responses toward realistic, human-like, and natural small-talk exchanges.
- Abstract(参考訳): 単なる形式性以外にも、小さな話は社会的ダイナミクスにおいて重要な役割を担い、ラプポートの構築と理解のための言葉による握手として機能する。
会話型AIとソーシャルロボットにとって、小さな会話に参加する能力は社会的可能性を高め、より快適で自然なユーザーインタラクションをもたらす。
本研究では,現在のLarge Language Models (LLMs) の能力を評価し,社会ロボットの小さな会話を駆動し,改善のための重要な領域を特定する。
フィードバックを自律的に生成し、LLM生成応答を小さな話の慣行と一致させる新しい手法を提案する。
チャットボットのインタラクションと人間-ロボットのインタラクションを含むいくつかの評価を通じて、現実的、人間らしく、そして自然な小語交換に対するLLM生成応答を誘導するシステムの有効性を実証する。
関連論文リスト
- Interactive Dialogue Agents via Reinforcement Learning on Hindsight Regenerations [58.65755268815283]
多くの実際の対話は対話的であり、つまりエージェントの発話が会話の相手に影響を与えるか、情報を引き出すか、意見を変えるかである。
この事実を利用して、既存の最適データを書き直し、拡張し、オフライン強化学習(RL)を介してトレーニングする。
実際の人間によるユーザ調査の結果、我々のアプローチは既存の最先端の対話エージェントを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2024-11-07T21:37:51Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
我々は,不関心や混乱の兆候を検出することを目的として,言語的および非言語的手がかりを精査することにより,ダイアディック的相互作用における係り合いを予測することに焦点を当てた。
本研究では,カジュアルなダイアディック会話に携わる34人の参加者を対象に,各会話の最後に自己報告されたエンゲージメント評価を行うデータセットを収集する。
大規模言語モデル(LLMs)を用いた新たな融合戦略を導入し,複数行動モダリティをマルチモーダル・トランスクリプトに統合する。
論文 参考訳(メタデータ) (2024-09-13T18:28:12Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
社会実践, 一貫性, 動的発達という, 心理学に根ざした個性の原則を統合したPersLLMを提案する。
モデルパラメータに直接パーソナリティ特性を組み込み、誘導に対するモデルの抵抗性を高め、一貫性を高め、パーソナリティの動的進化を支援する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z) - LLM Roleplay: Simulating Human-Chatbot Interaction [52.03241266241294]
本研究では,人間とチャットボットの対話をシミュレートする多元多元対話を自動生成する,目標指向のペルソナに基づく手法を提案する。
本手法は,人間とチャットボットの対話を高い相違率でシミュレートすることができる。
論文 参考訳(メタデータ) (2024-07-04T14:49:46Z) - A Multi-Modal Explainability Approach for Human-Aware Robots in Multi-Party Conversation [38.227022474450834]
本稿では,従来の最先端技術と比較して性能が向上したアドレス推定モデルを提案する。
また、上記のアーキテクチャに説明可能性と透明性を組み込むいくつかの方法を提案する。
論文 参考訳(メタデータ) (2024-05-20T13:09:32Z) - Ain't Misbehavin' -- Using LLMs to Generate Expressive Robot Behavior in
Conversations with the Tabletop Robot Haru [9.2526849536751]
本稿では,大規模言語モデル(LLM)を利用して,表現行動を伴うロボット応答を生成する,完全自動会話システムを提案する。
提案したシステムを用いて,ボランティアが社会ロボットとチャットし,そのフィードバックを分析し,チャットテキストの厳密な誤り解析を行う。
最も否定的なフィードバックは、会話に限られた影響を及ぼす自動音声認識(ASR)エラーによるものだった。
論文 参考訳(メタデータ) (2024-02-18T12:35:52Z) - AntEval: Evaluation of Social Interaction Competencies in LLM-Driven
Agents [65.16893197330589]
大規模言語モデル(LLM)は、幅広いシナリオで人間の振る舞いを再現する能力を示した。
しかし、複雑なマルチ文字のソーシャルインタラクションを扱う能力については、まだ完全には研究されていない。
本稿では,新しいインタラクションフレームワークと評価手法を含むマルチエージェントインタラクション評価フレームワーク(AntEval)を紹介する。
論文 参考訳(メタデータ) (2024-01-12T11:18:00Z) - Incremental Learning of Humanoid Robot Behavior from Natural Interaction and Large Language Models [23.945922720555146]
本研究では,自然相互作用から複雑な行動の漸進的な学習を実現するシステムを提案する。
本システムは,ヒューマノイドロボットARMAR-6のロボット認知アーキテクチャに組み込まれている。
論文 参考訳(メタデータ) (2023-09-08T13:29:05Z) - Forecasting Nonverbal Social Signals during Dyadic Interactions with
Generative Adversarial Neural Networks [0.0]
社会的相互作用の成功は、非言語的知覚と行動機構の相互作用と密接に結びついている。
非言語的ジェスチャーは、発話を強調したり意図を示す能力を持つ社会ロボットを養うことが期待されている。
我々の研究は、社会的相互作用における人間の振舞いのモデル化に光を当てている。
論文 参考訳(メタデータ) (2021-10-18T15:01:32Z) - A MultiModal Social Robot Toward Personalized Emotion Interaction [1.2183405753834562]
本研究では,ロボットインタラクションポリシーを強化するために,強化学習を伴うマルチモーダルヒューマンロボットインタラクション(HRI)フレームワークを実証する。
目標は、ロボットがより自然で魅力的なHRIフレームワークを作れるように、このフレームワークを社会シナリオに適用することだ。
論文 参考訳(メタデータ) (2021-10-08T00:35:44Z) - You Impress Me: Dialogue Generation via Mutual Persona Perception [62.89449096369027]
認知科学の研究は、理解が高品質なチャット会話に不可欠なシグナルであることを示唆している。
そこで我々は,P2 Botを提案する。このP2 Botは,理解を明示的にモデル化することを目的とした送信機受信者ベースのフレームワークである。
論文 参考訳(メタデータ) (2020-04-11T12:51:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。