論文の概要: Neuron Empirical Gradient: Connecting Neurons' Linear Controllability and Representational Capacity
- arxiv url: http://arxiv.org/abs/2412.18053v1
- Date: Tue, 24 Dec 2024 00:01:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:56:38.787136
- Title: Neuron Empirical Gradient: Connecting Neurons' Linear Controllability and Representational Capacity
- Title(参考訳): ニューロン経験的勾配:ニューロンの線形制御性と表現能力の結合
- Authors: Xin Zhao, Zehui Jiang, Naoki Yoshinaga,
- Abstract要約: まず、ニューロン活性化と出力トークン確率の線形関係を明らかにする。
PLMにおけるニューロンの経験的勾配が、スキルニューロンの探索による一般的なタスク知識を符号化するかどうかを検討する。
- 参考スコア(独自算出の注目度): 14.693407823048478
- License:
- Abstract: Although neurons in the feed-forward layers of pre-trained language models (PLMs) can store factual knowledge, most prior analyses remain qualitative, leaving the quantitative relationship among knowledge representation, neuron activations, and model output poorly understood. In this study, by performing neuron-wise interventions using factual probing datasets, we first reveal the linear relationship between neuron activations and output token probabilities. We refer to the gradient of this linear relationship as ``neuron empirical gradients.'' and propose NeurGrad, an efficient method for their calculation to facilitate quantitative neuron analysis. We next investigate whether neuron empirical gradients in PLMs encode general task knowledge by probing skill neurons. To this end, we introduce MCEval8k, a multi-choice knowledge evaluation benchmark spanning six genres and 22 tasks. Our experiments confirm that neuron empirical gradients effectively capture knowledge, while skill neurons exhibit efficiency, generality, inclusivity, and interdependency. These findings link knowledge to PLM outputs via neuron empirical gradients, shedding light on how PLMs store knowledge. The code and dataset are released.
- Abstract(参考訳): プレトレーニング言語モデル(PLM)のフィードフォワード層(英語版)のニューロンは事実知識を保存できるが、ほとんどの先行分析は質的であり、知識表現、ニューロンの活性化、モデル出力の間に定量的な関係を残している。
本研究では,実測データを用いてニューロンの介入を行うことにより,まず,ニューロンの活性化と出力トークン確率の線形関係を明らかにする。
この線形関係の勾配を ``neuron empirical gradients と呼ぶ。
定量的ニューロン解析を容易にするための計算法として,NeurGradを提案する。
次に, PLMにおけるニューロンの経験的勾配が, スキルニューロンの探索による一般的なタスク知識を符号化するかどうかを検討する。
この目的のために,6つのジャンルと22のタスクにまたがる多点知識評価ベンチマークであるMCEval8kを紹介する。
実験の結果,ニューロンは知識を効果的に捉え,スキルニューロンは効率,一般性,傾き,相互依存を示すことがわかった。
これらの知見は、PLMの知識を神経実験的勾配を通してPLMの出力と結びつけ、PLMの知識の保存方法に光を当てた。
コードとデータセットがリリースされる。
関連論文リスト
- Single-neuron deep generative model uncovers underlying physics of neuronal activity in Ca imaging data [0.0]
自己回帰変分オートエンコーダ(AVAE)を用いた単一ニューロン表現学習のための新しいフレームワークを提案する。
我々のアプローチでは、スパイク推論アルゴリズムを必要とせずに、個々のニューロンの信号を縮小次元空間に埋め込む。
AVAEは、より情報的で差別的な潜在表現を生成することによって、従来の線形手法よりも優れている。
論文 参考訳(メタデータ) (2025-01-24T16:33:52Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - Neuron-Level Knowledge Attribution in Large Language Models [19.472889262384818]
本稿では,重要なニューロンをピンポイントする静的手法を提案する。
他の7つの手法と比較して,本手法は3つの指標にまたがる優れた性能を示す。
また,注目層とフィードフォワード層の両方にわたる6種類の知識を解析するために,本手法を適用した。
論文 参考訳(メタデータ) (2023-12-19T13:23:18Z) - Neuroformer: Multimodal and Multitask Generative Pretraining for Brain Data [3.46029409929709]
最先端のシステム神経科学実験は大規模なマルチモーダルデータを生み出し、これらのデータセットは分析のための新しいツールを必要とする。
視覚領域と言語領域における大きな事前学習モデルの成功に触発されて、我々は大規模な細胞分解性神経スパイクデータの解析を自己回帰生成問題に再構成した。
我々はまず、シミュレーションデータセットでNeuroformerを訓練し、本質的なシミュレートされた神経回路の動作を正確に予測し、方向を含む基盤となる神経回路の接続性を推定した。
論文 参考訳(メタデータ) (2023-10-31T20:17:32Z) - WaLiN-GUI: a graphical and auditory tool for neuron-based encoding [73.88751967207419]
ニューロモルフィックコンピューティングはスパイクベースのエネルギー効率の高い通信に依存している。
本研究では, スパイクトレインへのサンプルベースデータの符号化に適した構成を同定するツールを開発した。
WaLiN-GUIはオープンソースとドキュメントが提供されている。
論文 参考訳(メタデータ) (2023-10-25T20:34:08Z) - Neuron to Graph: Interpreting Language Model Neurons at Scale [8.32093320910416]
本稿では,大規模言語モデル内の多数のニューロンにまたがる解釈可能性手法のスケールアップを目的とした,新しい自動化手法を提案する。
我々は、トレーニングしたデータセットからニューロンの振る舞いを自動的に抽出し、解釈可能なグラフに変換する革新的なツールであるNeuron to Graph(N2G)を提案する。
論文 参考訳(メタデータ) (2023-05-31T14:44:33Z) - N2G: A Scalable Approach for Quantifying Interpretable Neuron
Representations in Large Language Models [0.0]
N2Gは、ニューロンとそのデータセットの例を取り、これらの例のニューロンの振る舞いを解釈可能なグラフに自動的に蒸留するツールである。
我々は、重要なトークンのみを提示するためにトランケーションとサリエンシ法を使用し、より多様なサンプルでデータセットの例を拡大し、ニューロンの振る舞いの程度をより正確に把握する。
これらのグラフは、研究者による手動による解釈を助けるために視覚化できるが、テキスト上でトークンアクティベーションを出力して、ニューロンの基底真理アクティベーションと比較して自動検証することも可能だ。
論文 参考訳(メタデータ) (2023-04-22T19:06:13Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
神経科学の基本的な目標は、神経活動と行動の関係を理解することである。
我々は,ハエが自然に生み出す行動からなる新しいマルチモーダルデータセットを作成した。
このデータセットと新しい拡張セットは、神経科学における自己教師あり学習手法の適用を加速することを約束します。
論文 参考訳(メタデータ) (2021-11-29T15:27:51Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
訓練可能なパラメータが制限された小さなニューラルネットワークは、多くの単純なタスクに対してリソース効率の高い候補となる。
学習過程において隠れた層内のニューロンの多様性を探索する。
ニューロンの多様性がモデルの予測にどのように影響するかを分析する。
論文 参考訳(メタデータ) (2021-09-20T15:12:16Z) - Compositional Explanations of Neurons [52.71742655312625]
本稿では, 合成論理的概念を同定し, 深部表現におけるニューロンの説明手順について述べる。
本稿では,視覚と自然言語処理のモデルにおける解釈可能性に関するいくつかの疑問に答えるために,この手順を用いる。
論文 参考訳(メタデータ) (2020-06-24T20:37:05Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
XOR論理関数を100%精度で学習し, 標準的なニューロンに後続のアピーカルデンドライト活性化(ADA)が認められた。
コンピュータビジョン,信号処理,自然言語処理の6つのベンチマークデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-02-02T21:09:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。