論文の概要: Neuron-Level Knowledge Attribution in Large Language Models
- arxiv url: http://arxiv.org/abs/2312.12141v4
- Date: Tue, 24 Sep 2024 20:36:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 09:05:28.706033
- Title: Neuron-Level Knowledge Attribution in Large Language Models
- Title(参考訳): 大規模言語モデルにおけるニューロンレベル知識の寄与
- Authors: Zeping Yu, Sophia Ananiadou,
- Abstract要約: 本稿では,重要なニューロンをピンポイントする静的手法を提案する。
他の7つの手法と比較して,本手法は3つの指標にまたがる優れた性能を示す。
また,注目層とフィードフォワード層の両方にわたる6種類の知識を解析するために,本手法を適用した。
- 参考スコア(独自算出の注目度): 19.472889262384818
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identifying important neurons for final predictions is essential for understanding the mechanisms of large language models. Due to computational constraints, current attribution techniques struggle to operate at neuron level. In this paper, we propose a static method for pinpointing significant neurons. Compared to seven other methods, our approach demonstrates superior performance across three metrics. Additionally, since most static methods typically only identify "value neurons" directly contributing to the final prediction, we propose a method for identifying "query neurons" which activate these "value neurons". Finally, we apply our methods to analyze six types of knowledge across both attention and feed-forward network (FFN) layers. Our method and analysis are helpful for understanding the mechanisms of knowledge storage and set the stage for future research in knowledge editing. The code is available on https://github.com/zepingyu0512/neuron-attribution.
- Abstract(参考訳): 最終予測のために重要なニューロンを同定することは、大きな言語モデルのメカニズムを理解するために不可欠である。
計算上の制約のため、現在の属性技術はニューロンレベルでの動作に苦慮している。
本稿では,重要なニューロンをピンポイントする静的手法を提案する。
他の7つの手法と比較して,本手法は3つの指標にまたがる優れた性能を示す。
さらに、ほとんどの静的手法は、通常、最終予測に直接寄与する「バリューニューロン」のみを識別するため、これらの「バリューニューロン」を活性化する「クエリニューロン」を識別する手法を提案する。
最後に,本手法を用いて注意層とフィードフォワードネットワーク(FFN)層にまたがる6種類の知識を解析する。
本手法と分析は,知識記憶機構の理解に役立ち,今後の知識編集研究の舞台となる。
コードはhttps://github.com/zepingyu0512/neuron-attributionで公開されている。
関連論文リスト
- Growing Deep Neural Network Considering with Similarity between Neurons [4.32776344138537]
我々は、訓練段階におけるコンパクトモデルにおいて、ニューロン数を漸進的に増加させる新しいアプローチを探求する。
本稿では,ニューロン類似性分布に基づく制約を導入することにより,特徴抽出バイアスと神経冗長性を低減する手法を提案する。
CIFAR-10とCIFAR-100データセットの結果、精度が向上した。
論文 参考訳(メタデータ) (2024-08-23T11:16:37Z) - Linear Explanations for Individual Neurons [12.231741536057378]
高い活性化範囲は、ニューロンの因果効果のごく一部にのみ寄与することを示す。
さらに、低いアクティベーションを引き起こす入力は、しばしば非常に異なるものであり、高いアクティベーションを見るだけでは確実に予測できない。
論文 参考訳(メタデータ) (2024-05-10T23:48:37Z) - Simple and Effective Transfer Learning for Neuro-Symbolic Integration [50.592338727912946]
この問題の潜在的な解決策はNeuro-Symbolic Integration (NeSy)であり、ニューラルアプローチとシンボリック推論を組み合わせる。
これらの手法のほとんどは、認識をシンボルにマッピングするニューラルネットワークと、下流タスクの出力を予測する論理的論理的推論を利用する。
それらは、緩やかな収束、複雑な知覚タスクの学習困難、局所的なミニマへの収束など、いくつかの問題に悩まされている。
本稿では,これらの問題を改善するための簡易かつ効果的な方法を提案する。
論文 参考訳(メタデータ) (2024-02-21T15:51:01Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
我々は,側方接続とヘビアン学習に基づくニューラル操作を用いた新しい手法を開発した。
我々は,反復する側方接続におけるヘビアン学習と反ヘビアン学習が,神経活動の主部分空間を効果的に抽出できることを示した。
我々の手法は、ほとんど忘れることなくニューラルネットワークをスパイクするために一貫して解決する。
論文 参考訳(メタデータ) (2024-02-19T09:29:37Z) - Identifying Interpretable Visual Features in Artificial and Biological
Neural Systems [3.604033202771937]
ニューラルネットワークの単一ニューロンはしばしば、個々の直感的に意味のある特徴を表すものとして解釈される。
多くのニューロンは$textitmixed selectivity$、すなわち複数の無関係な特徴を示す。
本稿では、視覚的解釈可能性の定量化と、ネットワークアクティベーション空間における意味のある方向を見つけるためのアプローチを提案する。
論文 参考訳(メタデータ) (2023-10-17T17:41:28Z) - Neuron to Graph: Interpreting Language Model Neurons at Scale [8.32093320910416]
本稿では,大規模言語モデル内の多数のニューロンにまたがる解釈可能性手法のスケールアップを目的とした,新しい自動化手法を提案する。
我々は、トレーニングしたデータセットからニューロンの振る舞いを自動的に抽出し、解釈可能なグラフに変換する革新的なツールであるNeuron to Graph(N2G)を提案する。
論文 参考訳(メタデータ) (2023-05-31T14:44:33Z) - Redundancy and Concept Analysis for Code-trained Language Models [5.726842555987591]
コード学習言語モデルは、様々なコードインテリジェンスタスクに非常に効果的であることが証明されている。
計算ボトルネックとメモリ制約のため、多くのソフトウェアエンジニアリングアプリケーションのトレーニングとデプロイが難しい場合がある。
我々は,ソースコードモデルに対する最初のニューロンレベルの解析を行い,潜在表現内でのテクスチエントニューロンの同定を行う。
論文 参考訳(メタデータ) (2023-05-01T15:22:41Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
脳内では、情報はコード化され、伝達され、行動を伝えるために使用される。
ニューロモルフィック回路は、脳内のニューロンの集団が使用するものと互換性のある方法で情報を符号化する必要がある。
論文 参考訳(メタデータ) (2022-12-08T15:16:04Z) - Neuro-Symbolic Learning of Answer Set Programs from Raw Data [54.56905063752427]
Neuro-Symbolic AIは、シンボリックテクニックの解釈可能性と、生データから学ぶ深層学習の能力を組み合わせることを目的としている。
本稿では,ニューラルネットワークを用いて生データから潜在概念を抽出するNSIL(Neuro-Symbolic Inductive Learner)を提案する。
NSILは表現力のある知識を学習し、計算的に複雑な問題を解き、精度とデータ効率の観点から最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-05-25T12:41:59Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
訓練可能なパラメータが制限された小さなニューラルネットワークは、多くの単純なタスクに対してリソース効率の高い候補となる。
学習過程において隠れた層内のニューロンの多様性を探索する。
ニューロンの多様性がモデルの予測にどのように影響するかを分析する。
論文 参考訳(メタデータ) (2021-09-20T15:12:16Z) - Compositional Explanations of Neurons [52.71742655312625]
本稿では, 合成論理的概念を同定し, 深部表現におけるニューロンの説明手順について述べる。
本稿では,視覚と自然言語処理のモデルにおける解釈可能性に関するいくつかの疑問に答えるために,この手順を用いる。
論文 参考訳(メタデータ) (2020-06-24T20:37:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。