論文の概要: Neuron Empirical Gradient: Discovering and Quantifying Neurons Global Linear Controllability
- arxiv url: http://arxiv.org/abs/2412.18053v2
- Date: Mon, 17 Feb 2025 03:19:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:06:38.338191
- Title: Neuron Empirical Gradient: Discovering and Quantifying Neurons Global Linear Controllability
- Title(参考訳): ニューロン経験的勾配:グローバルリニア制御の発見と定量化
- Authors: Xin Zhao, Zehui Jiang, Naoki Yoshinaga,
- Abstract要約: 本研究はまず,ニューロン活性化とモデル出力の数値的関係について検討する。
ニューロン実験勾配(NEG)の正確かつ効率的な計算法であるNeurGradを導入する。
- 参考スコア(独自算出の注目度): 14.693407823048478
- License:
- Abstract: Although feed-forward neurons in pre-trained language models (PLMs) can store knowledge and their importance in influencing model outputs has been studied, existing work focuses on finding a limited set of neurons and analyzing their relative importance. However, the global quantitative role of activation values in shaping outputs remains unclear, hindering further advancements in applications like knowledge editing. Our study first investigates the numerical relationship between neuron activations and model output and discovers the global linear relationship between them through neuron interventions on a knowledge probing dataset. We refer to the gradient of this linear relationship as neuron empirical gradient (NEG), and introduce NeurGrad, an accurate and efficient method for computing NEG. NeurGrad enables quantitative analysis of all neurons in PLMs, advancing our understanding of neurons' controllability. Furthermore, we explore NEG's ability to represent language skills across diverse prompts via skill neuron probing. Experiments on MCEval8k, a multi-choice knowledge benchmark spanning various genres, validate NEG's representational ability. The data and code are released.
- Abstract(参考訳): プレトレーニング言語モデル(PLM)におけるフィードフォワードニューロンは、知識を蓄積することができ、モデル出力への影響においてその重要性が研究されているが、既存の研究は、限られたニューロンの集合を見つけ、それらの相対的重要性を分析することに焦点を当てている。
しかし、活性化値のグローバルな定量的な役割は、知識編集のような応用のさらなる進歩を妨げるままである。
本研究はまず,ニューロンの活性化とモデル出力の数値的関係について検討し,知識探索データセット上でのニューロン介入を通して,それらの間の大域的線形関係を明らかにする。
我々は、この線形関係の勾配をニューロン経験勾配(NEG)と呼び、NEGの正確かつ効率的な計算方法であるNeurGradを導入する。
NeurGradは、PLM内の全てのニューロンを定量的に分析し、ニューロンの制御可能性の理解を深める。
さらに, NEGの言語能力の表現能力について, スキルニューロンの探索を通じて, 多様なプロンプトにまたがって検討する。
MCEval8kは、様々なジャンルにまたがるマルチチョイス知識ベンチマークであり、NEGの表現能力を検証する。
データとコードはリリースされます。
関連論文リスト
- Single-neuron deep generative model uncovers underlying physics of neuronal activity in Ca imaging data [0.0]
自己回帰変分オートエンコーダ(AVAE)を用いた単一ニューロン表現学習のための新しいフレームワークを提案する。
我々のアプローチでは、スパイク推論アルゴリズムを必要とせずに、個々のニューロンの信号を縮小次元空間に埋め込む。
AVAEは、より情報的で差別的な潜在表現を生成することによって、従来の線形手法よりも優れている。
論文 参考訳(メタデータ) (2025-01-24T16:33:52Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - Neuron-Level Knowledge Attribution in Large Language Models [19.472889262384818]
本稿では,重要なニューロンをピンポイントする静的手法を提案する。
他の7つの手法と比較して,本手法は3つの指標にまたがる優れた性能を示す。
また,注目層とフィードフォワード層の両方にわたる6種類の知識を解析するために,本手法を適用した。
論文 参考訳(メタデータ) (2023-12-19T13:23:18Z) - Neuroformer: Multimodal and Multitask Generative Pretraining for Brain Data [3.46029409929709]
最先端のシステム神経科学実験は大規模なマルチモーダルデータを生み出し、これらのデータセットは分析のための新しいツールを必要とする。
視覚領域と言語領域における大きな事前学習モデルの成功に触発されて、我々は大規模な細胞分解性神経スパイクデータの解析を自己回帰生成問題に再構成した。
我々はまず、シミュレーションデータセットでNeuroformerを訓練し、本質的なシミュレートされた神経回路の動作を正確に予測し、方向を含む基盤となる神経回路の接続性を推定した。
論文 参考訳(メタデータ) (2023-10-31T20:17:32Z) - WaLiN-GUI: a graphical and auditory tool for neuron-based encoding [73.88751967207419]
ニューロモルフィックコンピューティングはスパイクベースのエネルギー効率の高い通信に依存している。
本研究では, スパイクトレインへのサンプルベースデータの符号化に適した構成を同定するツールを開発した。
WaLiN-GUIはオープンソースとドキュメントが提供されている。
論文 参考訳(メタデータ) (2023-10-25T20:34:08Z) - Neuron to Graph: Interpreting Language Model Neurons at Scale [8.32093320910416]
本稿では,大規模言語モデル内の多数のニューロンにまたがる解釈可能性手法のスケールアップを目的とした,新しい自動化手法を提案する。
我々は、トレーニングしたデータセットからニューロンの振る舞いを自動的に抽出し、解釈可能なグラフに変換する革新的なツールであるNeuron to Graph(N2G)を提案する。
論文 参考訳(メタデータ) (2023-05-31T14:44:33Z) - N2G: A Scalable Approach for Quantifying Interpretable Neuron
Representations in Large Language Models [0.0]
N2Gは、ニューロンとそのデータセットの例を取り、これらの例のニューロンの振る舞いを解釈可能なグラフに自動的に蒸留するツールである。
我々は、重要なトークンのみを提示するためにトランケーションとサリエンシ法を使用し、より多様なサンプルでデータセットの例を拡大し、ニューロンの振る舞いの程度をより正確に把握する。
これらのグラフは、研究者による手動による解釈を助けるために視覚化できるが、テキスト上でトークンアクティベーションを出力して、ニューロンの基底真理アクティベーションと比較して自動検証することも可能だ。
論文 参考訳(メタデータ) (2023-04-22T19:06:13Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
神経科学の基本的な目標は、神経活動と行動の関係を理解することである。
我々は,ハエが自然に生み出す行動からなる新しいマルチモーダルデータセットを作成した。
このデータセットと新しい拡張セットは、神経科学における自己教師あり学習手法の適用を加速することを約束します。
論文 参考訳(メタデータ) (2021-11-29T15:27:51Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
訓練可能なパラメータが制限された小さなニューラルネットワークは、多くの単純なタスクに対してリソース効率の高い候補となる。
学習過程において隠れた層内のニューロンの多様性を探索する。
ニューロンの多様性がモデルの予測にどのように影響するかを分析する。
論文 参考訳(メタデータ) (2021-09-20T15:12:16Z) - Compositional Explanations of Neurons [52.71742655312625]
本稿では, 合成論理的概念を同定し, 深部表現におけるニューロンの説明手順について述べる。
本稿では,視覚と自然言語処理のモデルにおける解釈可能性に関するいくつかの疑問に答えるために,この手順を用いる。
論文 参考訳(メタデータ) (2020-06-24T20:37:05Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
XOR論理関数を100%精度で学習し, 標準的なニューロンに後続のアピーカルデンドライト活性化(ADA)が認められた。
コンピュータビジョン,信号処理,自然言語処理の6つのベンチマークデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-02-02T21:09:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。