論文の概要: What Constitutes a Less Discriminatory Algorithm?
- arxiv url: http://arxiv.org/abs/2412.18138v2
- Date: Mon, 24 Mar 2025 16:25:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:32:59.755105
- Title: What Constitutes a Less Discriminatory Algorithm?
- Title(参考訳): 差別化の少ないアルゴリズムを構成するものは何か?
- Authors: Benjamin Laufer, Manish Raghavan, Solon Barocas,
- Abstract要約: 形式的なLDA定義は、保持データがない場合に予測モデルを評価し、比較しようとすると、根本的な問題に直面します。
当社は、企業と原告の両方が、社会的目標に合う代替モデルを検索できる枠組みを提唱した。
- 参考スコア(独自算出の注目度): 2.842548870013324
- License:
- Abstract: Disparate impact doctrine offers an important legal apparatus for targeting discriminatory data-driven algorithmic decisions. A recent body of work has focused on conceptualizing one particular construct from this doctrine: the less discriminatory alternative, an alternative policy that reduces disparities while meeting the same business needs of a status quo or baseline policy. However, attempts to operationalize this construct in the algorithmic setting must grapple with some thorny challenges and ambiguities. In this paper, we attempt to raise and resolve important questions about less discriminatory algorithms (LDAs). How should we formally define LDAs, and how does this interact with different societal goals they might serve? And how feasible is it for firms or plaintiffs to computationally search for candidate LDAs? We find that formal LDA definitions face fundamental challenges when they attempt to evaluate and compare predictive models in the absence of held-out data. As a result, we argue that LDA definitions cannot be purely quantitative, and must rely on standards of "reasonableness." We then identify both mathematical and computational constraints on firms' ability to efficiently conduct a proactive search for LDAs, but we provide evidence that these limits are "weak" in a formal sense. By defining LDAs formally, we put forward a framework in which both firms and plaintiffs can search for alternative models that comport with societal goals.
- Abstract(参考訳): 異なる影響原理は、差別的なデータ駆動型アルゴリズム決定をターゲットとする重要な法的手段を提供する。
差別の少ない代替策は、現状のクオや基本方針と同じビジネスニーズを満たしながら格差を減らす代替政策である。
しかし、アルゴリズム設定でこの構造を運用しようとする試みは、いくつかの厄介な問題と曖昧さに対処しなければならない。
本稿では,低識別アルゴリズム (LDA) に関する重要な問題を提起し,解決しようと試みる。
どのようにしてLDAを正式に定義し、それが果たす可能性のあるさまざまな社会的目標とどのように相互作用するのか?
そして、企業や原告が候補者のLDAを計算で検索することは、どの程度可能か?
形式的なLDA定義は、保持データがない場合に予測モデルを評価・比較しようとすると、根本的な課題に直面する。
結果として、LDAの定義は純粋に定量的なものではなく、「理性」の基準に頼らなければならないと論じる。
次に、LDAの積極的な探索を効率的に行う企業の能力に関する数学的制約と計算的制約の両方を識別するが、これらの制限が形式的な意味で「弱」であることを示す。
LDAを正式に定義することで、企業と原告の両方が、社会的目標に合わせた代替モデルを検索できる枠組みを策定しました。
関連論文リスト
- The Legal Duty to Search for Less Discriminatory Algorithms [4.625678906362822]
法律はLDAを合理的に捜索する義務を負うべきだと我々は主張する。
モデル乗法とLDAの可用性は、識別アルゴリズムに対する法的な応答に重大な影響を与える。
我々は、この法律は、カバーされた公民権領域における予測モデルの開発と展開を行うエンティティに対して、適切なLDAの探索の義務を負うべきだと論じる。
論文 参考訳(メタデータ) (2024-06-10T21:56:38Z) - Fairness-Accuracy Trade-Offs: A Causal Perspective [58.06306331390586]
我々は、初めて因果レンズから公正性と正確性の間の張力を分析する。
因果的制約を強制することは、しばしば人口集団間の格差を減少させることを示す。
因果制約付きフェアラーニングのための新しいニューラルアプローチを導入する。
論文 参考訳(メタデータ) (2024-05-24T11:19:52Z) - Preference Fine-Tuning of LLMs Should Leverage Suboptimal, On-Policy Data [102.16105233826917]
好みラベルからの学習は、微調整された大きな言語モデルにおいて重要な役割を果たす。
好みの微調整には、教師付き学習、オンライン強化学習(RL)、コントラスト学習など、いくつかの異なるアプローチがある。
論文 参考訳(メタデータ) (2024-04-22T17:20:18Z) - Federated Fairness without Access to Sensitive Groups [12.888927461513472]
連合学習におけるグループフェアネスへの現在のアプローチは、トレーニング中に事前に定義されラベル付けされたセンシティブなグループが存在することを前提としている。
我々は、センシティブなグループや追加のラベルの事前定義された定義に依存しないグループフェアネスを保証するための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-02-22T19:24:59Z) - Evaluating the Fairness of Discriminative Foundation Models in Computer
Vision [51.176061115977774]
本稿では,CLIP (Contrastive Language-Pretraining) などの差別基盤モデルのバイアス評価のための新しい分類法を提案する。
そして、これらのモデルにおけるバイアスを緩和するための既存の手法を分類学に関して体系的に評価する。
具体的には,ゼロショット分類,画像検索,画像キャプションなど,OpenAIのCLIPとOpenCLIPモデルをキーアプリケーションとして評価する。
論文 参考訳(メタデータ) (2023-10-18T10:32:39Z) - Fairness in Ranking under Disparate Uncertainty [24.401219403555814]
我々は、基礎となる関連モデルの不確実性がオプション群間で異なる場合、ランク付けは不公平をもたらす可能性があると論じる。
ランク付けのための新しい公正基準として平等ランク付け(EOR)を提案する。
異なる不確実性が存在する場合でも、EORは関連する選択肢の中でグループワイドフェア・宝くじに対応していることを示す。
論文 参考訳(メタデータ) (2023-09-04T13:49:48Z) - RAGUEL: Recourse-Aware Group Unfairness Elimination [2.720659230102122]
「algorithmic recourse」は、望ましくない結果を変えるための実行可能な回復行動を提供する。
ランク付けされたグループレベルのリコースフェアネスの概念を導入する。
我々は、ランク付けされたrecourse Fairness制約を満たす'recourse-aware ranking'ソリューションを開発する。
論文 参考訳(メタデータ) (2022-08-30T11:53:38Z) - Reusing the Task-specific Classifier as a Discriminator:
Discriminator-free Adversarial Domain Adaptation [55.27563366506407]
非教師付きドメイン適応(UDA)のための識別器なし対向学習ネットワーク(DALN)を導入する。
DALNは、統一された目的によって明確なドメインアライメントとカテゴリの区別を達成する。
DALNは、さまざまなパブリックデータセット上の既存の最先端(SOTA)メソッドと比較して好意的に比較する。
論文 参考訳(メタデータ) (2022-04-08T04:40:18Z) - Fairness-Aware Naive Bayes Classifier for Data with Multiple Sensitive
Features [0.0]
2-naive-Bayes (2NB) をN-naive-Bayes (NNB) に一般化し、データ中の2つのセンシティブなグループを仮定することの単純化を回避する。
本稿では,複数の感度特徴を持つデータへの適用について検討し,差分フェアネスを強制する新しい制約・後処理ルーチンを提案する。
論文 参考訳(メタデータ) (2022-02-23T13:32:21Z) - Measuring Fairness Under Unawareness of Sensitive Attributes: A
Quantification-Based Approach [131.20444904674494]
センシティブな属性の無意識下でのグループフェアネスを測定する問題に取り組む。
定量化手法は, フェアネスと無意識の問題に対処するのに特に適していることを示す。
論文 参考訳(メタデータ) (2021-09-17T13:45:46Z) - A Low Rank Promoting Prior for Unsupervised Contrastive Learning [108.91406719395417]
提案手法は,従来の低階の促進をコントラスト学習の枠組みに効果的に組み込む新しい確率的グラフィカルモデルを構築する。
我々の仮説は、同じインスタンスクラスに属するすべてのサンプルが、小さな次元の同じ部分空間上にあることを明示的に要求する。
実証的な証拠は、提案アルゴリズムが複数のベンチマークにおける最先端のアプローチを明らかに上回っていることを示している。
論文 参考訳(メタデータ) (2021-08-05T15:58:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。