Simple Quantum Gradient Descent Without Coherent Oracle Access
- URL: http://arxiv.org/abs/2412.18309v1
- Date: Tue, 24 Dec 2024 09:48:38 GMT
- Title: Simple Quantum Gradient Descent Without Coherent Oracle Access
- Authors: Nhat A. Nghiem,
- Abstract summary: We develop a quantum gradient descent algorithm with a running time logarithmical in the number of variables.
Our framework adds more element to the existing literature, demonstrating the surprising flexible power of quantum singular value transformation.
- Score: 0.0
- License:
- Abstract: The gradient descent method aims at finding local minima of a given multivariate function by moving along the direction of its gradient, and hence, the algorithm typically involves computing all partial derivatives of a given function, before updating the solution iteratively. In the work of Rebentrost et al. [New Journal of Physics, 21(7):073023, 2019], the authors translated the iterative optimization algorithm into a quantum setting, with some assumptions regarding certain structure of the given function, with oracle or black-box access to some matrix that specifies the structure. Here, we develop an alternative quantum framework for the gradient descent problem. By leveraging the seminal quantum singular value transformation framework, we are able to construct a quantum gradient descent algorithm with a running time logarithmical in the number of variables. In particular, our method can work with a broader class of functions and remove the requirement for any coherent oracle access. Furthermore, our framework also consumes exponentially less qubits than the prior quantum algorithm. Thus, our framework adds more element to the existing literature, demonstrating the surprising flexible power of quantum singular value transformation, showing further potential direction to explore the capability of quantum singular value transformation, and quantum computational advantage as a whole.
Related papers
- Bias-field digitized counterdiabatic quantum optimization [39.58317527488534]
We call this protocol bias-field digitizeddiabatic quantum optimization (BF-DCQO)
Our purely quantum approach eliminates the dependency on classical variational quantum algorithms.
It achieves scaling improvements in ground state success probabilities, increasing by up to two orders of magnitude.
arXiv Detail & Related papers (2024-05-22T18:11:42Z) - Quantum Realization of the Finite Element Method [0.0]
This paper presents a quantum algorithm for the solution of second-order linear elliptic partial differential equations discretized by $d$-linear finite elements.
An essential step in the construction is a BPX preconditioner, which transforms the linear system into a sufficiently well-conditioned one.
We provide a constructive proof demonstrating that, for any fixed dimension, our quantum algorithm can compute suitable functionals of the solution to a given tolerance.
arXiv Detail & Related papers (2024-03-28T15:44:20Z) - Improved Quantum Algorithms for Eigenvalues Finding and Gradient Descent [0.0]
Block encoding is a key ingredient in the recently developed quantum signal processing that forms a unifying framework for quantum algorithms.
In this article, we utilize block encoding to substantially enhance two previously proposed quantum algorithms.
We show how to extend our proposed method to different contexts, including matrix inversion and multiple eigenvalues estimation.
arXiv Detail & Related papers (2023-12-22T15:59:03Z) - Pure Quantum Gradient Descent Algorithm and Full Quantum Variational
Eigensolver [0.7149735232319818]
gradient-based gradient descent algorithm is a widely adopted optimization method.
We propose a novel quantum-based gradient calculation method that requires only a single oracle calculation.
We successfully implemented the quantum gradient descent algorithm and applied it to the Variational Quantum Eigensolver (VQE)
arXiv Detail & Related papers (2023-05-07T05:52:41Z) - Quantum Phase Processing and its Applications in Estimating Phase and
Entropies [10.8525801756287]
"quantum phase processing" can directly apply arbitrary trigonometric transformations to eigenphases of a unitary operator.
Quantum phase processing can extract the eigen-information of quantum systems by simply measuring the ancilla qubit.
We propose a new quantum phase estimation algorithm without quantum Fourier transform, which requires the fewest ancilla qubits and matches the best performance so far.
arXiv Detail & Related papers (2022-09-28T17:41:19Z) - Quantum algorithms for grid-based variational time evolution [36.136619420474766]
We propose a variational quantum algorithm for performing quantum dynamics in first quantization.
Our simulations exhibit the previously observed numerical instabilities of variational time propagation approaches.
arXiv Detail & Related papers (2022-03-04T19:00:45Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Quantum Compiling by Deep Reinforcement Learning [30.189226681406392]
The architecture of circuital quantum computers requires layers devoted to compiling high-level quantum algorithms into lower-level circuits of quantum gates.
The general problem of quantum compiling is to approximate any unitary transformation that describes the quantum computation, as a sequence of elements selected from a finite base of universal quantum gates.
We exploit the deep reinforcement learning method as an alternative strategy, which has a significantly different trade-off between search time and exploitation time.
arXiv Detail & Related papers (2021-05-31T15:32:15Z) - Quantum mean value approximator for hard integer value problems [19.4417702222583]
We show that an optimization can be improved substantially by using an approximation rather than the exact expectation.
Together with efficient classical sampling algorithms, a quantum algorithm with minimal gate count can thus improve the efficiency of general integer-value problems.
arXiv Detail & Related papers (2021-05-27T13:03:52Z) - Measuring Analytic Gradients of General Quantum Evolution with the
Stochastic Parameter Shift Rule [0.0]
We study the problem of estimating the gradient of the function to be optimized directly from quantum measurements.
We derive a mathematically exact formula that provides an algorithm for estimating the gradient of any multi-qubit parametric quantum evolution.
Our algorithm continues to work, although with some approximations, even when all the available quantum gates are noisy.
arXiv Detail & Related papers (2020-05-20T18:24:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.