Simple Quantum Gradient Descent Without Coherent Oracle Access
- URL: http://arxiv.org/abs/2412.18309v2
- Date: Mon, 24 Feb 2025 09:40:17 GMT
- Title: Simple Quantum Gradient Descent Without Coherent Oracle Access
- Authors: Nhat A. Nghiem,
- Abstract summary: We develop an alternative quantum framework for the gradient descent problem, based on the seminal quantum singular value transformation framework.<n>We show that given only classical information of function of interest, it is possible to construct a quantum gradient descent algorithm with a running time logarithmical in the number of variables.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The gradient descent method aims at finding local minima of a given multivariate function by moving along the direction of its gradient, and hence, the algorithm typically involves computing all partial derivatives of a given function, before updating the solution iteratively. In the work of Rebentrost et al. [New Journal of Physics, 21(7):073023, 2019], the authors translated the iterative optimization algorithm into a quantum setting, with some assumptions regarding certain structure of the given function, with oracle or black-box access to some matrix that specifies the structure. Here, we develop an alternative quantum framework for the gradient descent problem, based on the seminal quantum singular value transformation framework. We show that given only classical information of function of interest, it is possible to construct a quantum gradient descent algorithm with a running time logarithmical in the number of variables. In particular, our framework consumes exponentially less qubits than the prior quantum gradient descent algorithm and removes the need for any coherent oracle access to classical information. Thus, our work provides another example demonstrating the power of quantum singular value transformation framework, and in particular, it adds another instance revealing that quantum coherent access is not necessary for quantum computational advantage.
Related papers
- Accelerating Quantum Reinforcement Learning with a Quantum Natural Policy Gradient Based Approach [36.05085942729295]
This paper introduces a Quantum Natural Policy Gradient (QNPG) algorithm, which replaces the random sampling used in classicalNPG estimators with a deterministic gradient estimation approach.
The proposed QNPG algorithm achieves a sample complexity of $tildemathcalO(epsilon-1.5)$ for queries to the quantum oracle, significantly improving the classical lower bound of $tildemathcalO(epsilon-2)$ for queries to the Markov Decision Process (MDP)
arXiv Detail & Related papers (2025-01-27T17:38:30Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Quantum speedups for stochastic optimization [18.32349609443295]
We consider the problem of minimizing a continuous function given quantumvitzvariance to an oracle.
We provide two new methods for the special case of minimizing a Lipsch avvitz function.
arXiv Detail & Related papers (2023-08-03T07:39:10Z) - Pure Quantum Gradient Descent Algorithm and Full Quantum Variational
Eigensolver [0.7149735232319818]
gradient-based gradient descent algorithm is a widely adopted optimization method.
We propose a novel quantum-based gradient calculation method that requires only a single oracle calculation.
We successfully implemented the quantum gradient descent algorithm and applied it to the Variational Quantum Eigensolver (VQE)
arXiv Detail & Related papers (2023-05-07T05:52:41Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Quantum Phase Processing and its Applications in Estimating Phase and
Entropies [10.8525801756287]
"quantum phase processing" can directly apply arbitrary trigonometric transformations to eigenphases of a unitary operator.
Quantum phase processing can extract the eigen-information of quantum systems by simply measuring the ancilla qubit.
We propose a new quantum phase estimation algorithm without quantum Fourier transform, which requires the fewest ancilla qubits and matches the best performance so far.
arXiv Detail & Related papers (2022-09-28T17:41:19Z) - Adiabatic quantum computing with parameterized quantum circuits [0.0]
We propose a discrete version of adiabatic quantum computing that can be implemented in a near-term device.
We compare our proposed algorithm with the Variational Quantum Eigensolver on two classical optimization problems.
arXiv Detail & Related papers (2022-06-09T09:31:57Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Quantum algorithms for grid-based variational time evolution [36.136619420474766]
We propose a variational quantum algorithm for performing quantum dynamics in first quantization.
Our simulations exhibit the previously observed numerical instabilities of variational time propagation approaches.
arXiv Detail & Related papers (2022-03-04T19:00:45Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Quantum Compiling by Deep Reinforcement Learning [30.189226681406392]
The architecture of circuital quantum computers requires layers devoted to compiling high-level quantum algorithms into lower-level circuits of quantum gates.
The general problem of quantum compiling is to approximate any unitary transformation that describes the quantum computation, as a sequence of elements selected from a finite base of universal quantum gates.
We exploit the deep reinforcement learning method as an alternative strategy, which has a significantly different trade-off between search time and exploitation time.
arXiv Detail & Related papers (2021-05-31T15:32:15Z) - Quantum Search for Scaled Hash Function Preimages [1.3299507495084417]
We present the implementation of Grover's algorithm in a quantum simulator to perform a quantum search for preimages of two scaled hash functions.
We show that strategies that suggest a shortcut based on sampling the quantum register after a few steps of Grover's algorithm can only provide some marginal practical advantage in terms of error mitigation.
arXiv Detail & Related papers (2020-09-01T18:00:02Z) - Measuring Analytic Gradients of General Quantum Evolution with the
Stochastic Parameter Shift Rule [0.0]
We study the problem of estimating the gradient of the function to be optimized directly from quantum measurements.
We derive a mathematically exact formula that provides an algorithm for estimating the gradient of any multi-qubit parametric quantum evolution.
Our algorithm continues to work, although with some approximations, even when all the available quantum gates are noisy.
arXiv Detail & Related papers (2020-05-20T18:24:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.