RaSeRec: Retrieval-Augmented Sequential Recommendation
- URL: http://arxiv.org/abs/2412.18378v3
- Date: Thu, 13 Feb 2025 13:35:51 GMT
- Title: RaSeRec: Retrieval-Augmented Sequential Recommendation
- Authors: Xinping Zhao, Baotian Hu, Yan Zhong, Shouzheng Huang, Zihao Zheng, Meng Wang, Haofen Wang, Min Zhang,
- Abstract summary: We propose a Retrieval-Augmented Sequential Recommendation framework, named RaSeRec.
RaSeRec maintains a dynamic memory bank to accommodate preference drifts and retrieve relevant memories to augment user modeling explicitly.
It consists of two stages: collaborative-based pre-training, which learns to recommend and retrieve; (ii) retrieval-augmented fine-tuning, which learns to leverage retrieved memories.
- Score: 27.276639257126664
- License:
- Abstract: Although prevailing supervised and self-supervised learning augmented sequential recommendation (SeRec) models have achieved improved performance with powerful neural network architectures, we argue that they still suffer from two limitations: (1) Preference Drift, where models trained on past data can hardly accommodate evolving user preference; and (2) Implicit Memory, where head patterns dominate parametric learning, making it harder to recall long tails. In this work, we explore retrieval augmentation in SeRec, to address these limitations. Specifically, we propose a Retrieval-Augmented Sequential Recommendation framework, named RaSeRec, the main idea of which is to maintain a dynamic memory bank to accommodate preference drifts and retrieve relevant memories to augment user modeling explicitly. It consists of two stages: (i) collaborative-based pre-training, which learns to recommend and retrieve; (ii) retrieval-augmented fine-tuning, which learns to leverage retrieved memories. Extensive experiments on three datasets fully demonstrate the superiority and effectiveness of RaSeRec. The implementation code is available at https://github.com/HITsz-TMG/RaSeRec.
Related papers
- Finding Needles in Emb(a)dding Haystacks: Legal Document Retrieval via Bagging and SVR Ensembles [51.0691253204425]
We introduce a retrieval approach leveraging Support Vector Regression ensembles, bootstrap aggregation (bagging), and embedding spaces on the German dataset for Legal Information Retrieval (GerDaLIR)
We show improved recall over the baselines using our voting ensemble, suggesting promising initial results, without training or fine-tuning any deep learning models.
arXiv Detail & Related papers (2025-01-09T07:21:44Z) - Towards Generalizable Trajectory Prediction Using Dual-Level Representation Learning And Adaptive Prompting [107.4034346788744]
Existing vehicle trajectory prediction models struggle with generalizability, prediction uncertainties, and handling complex interactions.
We propose Perceiver with Register queries (PerReg+), a novel trajectory prediction framework that introduces: (1) Dual-Level Representation Learning via Self-Distillation (SD) and Masked Reconstruction (MR), capturing global context and fine-grained details; (2) Enhanced Multimodality using register-based queries and pretraining, eliminating the need for clustering and suppression; and (3) Adaptive Prompt Tuning during fine-tuning, freezing the main architecture and optimizing a small number of prompts for efficient adaptation.
arXiv Detail & Related papers (2025-01-08T20:11:09Z) - DimeRec: A Unified Framework for Enhanced Sequential Recommendation via Generative Diffusion Models [39.49215596285211]
Sequential Recommendation (SR) plays a pivotal role in recommender systems by tailoring recommendations to user preferences based on their non-stationary historical interactions.
We propose a novel framework called DimeRec that combines a guidance extraction module (GEM) and a generative diffusion aggregation module (DAM)
Our numerical experiments demonstrate that DimeRec significantly outperforms established baseline methods across three publicly available datasets.
arXiv Detail & Related papers (2024-08-22T06:42:09Z) - Continual Referring Expression Comprehension via Dual Modular
Memorization [133.46886428655426]
Referring Expression (REC) aims to localize an image region of a given object described by a natural-language expression.
Existing REC algorithms make a strong assumption that training data feeding into a model are given upfront, which degrades its practicality for real-world scenarios.
In this paper, we propose Continual Referring Expression (CREC), a new setting for REC, where a model is learning on a stream of incoming tasks.
In order to continuously improve the model on sequential tasks without forgetting prior learned knowledge and without repeatedly re-training from a scratch, we propose an effective baseline method named Dual Modular Memorization
arXiv Detail & Related papers (2023-11-25T02:58:51Z) - A Memory Transformer Network for Incremental Learning [64.0410375349852]
We study class-incremental learning, a training setup in which new classes of data are observed over time for the model to learn from.
Despite the straightforward problem formulation, the naive application of classification models to class-incremental learning results in the "catastrophic forgetting" of previously seen classes.
One of the most successful existing methods has been the use of a memory of exemplars, which overcomes the issue of catastrophic forgetting by saving a subset of past data into a memory bank and utilizing it to prevent forgetting when training future tasks.
arXiv Detail & Related papers (2022-10-10T08:27:28Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
We propose the model S3-Rec, which stands for Self-Supervised learning for Sequential Recommendation.
For our task, we devise four auxiliary self-supervised objectives to learn the correlations among attribute, item, subsequence, and sequence.
Extensive experiments conducted on six real-world datasets demonstrate the superiority of our proposed method over existing state-of-the-art methods.
arXiv Detail & Related papers (2020-08-18T11:44:10Z) - ADER: Adaptively Distilled Exemplar Replay Towards Continual Learning
for Session-based Recommendation [28.22402119581332]
Session-based recommendation has received growing attention recently due to the increasing privacy concern.
We propose a method called Adaptively Distilled Exemplar Replay (ADER) by periodically replaying previous training samples.
ADER consistently outperforms other baselines, and it even outperforms the method using all historical data at every update cycle.
arXiv Detail & Related papers (2020-07-23T13:19:53Z) - A Generic Network Compression Framework for Sequential Recommender
Systems [71.81962915192022]
Sequential recommender systems (SRS) have become the key technology in capturing user's dynamic interests and generating high-quality recommendations.
We propose a compressed sequential recommendation framework, termed as CpRec, where two generic model shrinking techniques are employed.
By the extensive ablation studies, we demonstrate that the proposed CpRec can achieve up to 4$sim$8 times compression rates in real-world SRS datasets.
arXiv Detail & Related papers (2020-04-21T08:40:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.