Think Before Recommend: Unleashing the Latent Reasoning Power for Sequential Recommendation
- URL: http://arxiv.org/abs/2503.22675v2
- Date: Wed, 16 Apr 2025 10:20:11 GMT
- Title: Think Before Recommend: Unleashing the Latent Reasoning Power for Sequential Recommendation
- Authors: Jiakai Tang, Sunhao Dai, Teng Shi, Jun Xu, Xu Chen, Wen Chen, Wu Jian, Yuning Jiang,
- Abstract summary: We propose textbfReaRec, the first inference-time computing framework for recommender systems.<n>ReaRec autoregressively feeds the sequence's last hidden state into the sequential recommender.<n>We introduce two lightweight reasoning-based learning methods, Ensemble Reasoning Learning (ERL) and Progressive Reasoning Learning (PRL)
- Score: 20.965068290049057
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sequential Recommendation (SeqRec) aims to predict the next item by capturing sequential patterns from users' historical interactions, playing a crucial role in many real-world recommender systems. However, existing approaches predominantly adopt a direct forward computation paradigm, where the final hidden state of the sequence encoder serves as the user representation. We argue that this inference paradigm, due to its limited computational depth, struggles to model the complex evolving nature of user preferences and lacks a nuanced understanding of long-tail items, leading to suboptimal performance. To address this issue, we propose \textbf{ReaRec}, the first inference-time computing framework for recommender systems, which enhances user representations through implicit multi-step reasoning. Specifically, ReaRec autoregressively feeds the sequence's last hidden state into the sequential recommender while incorporating special reasoning position embeddings to decouple the original item encoding space from the multi-step reasoning space. Moreover, we introduce two lightweight reasoning-based learning methods, Ensemble Reasoning Learning (ERL) and Progressive Reasoning Learning (PRL), to further effectively exploit ReaRec's reasoning potential. Extensive experiments on five public real-world datasets and different SeqRec architectures demonstrate the generality and effectiveness of our proposed ReaRec. Remarkably, post-hoc analyses reveal that ReaRec significantly elevates the performance ceiling of multiple sequential recommendation backbones by approximately 30\%-50\%. Thus, we believe this work can open a new and promising avenue for future research in inference-time computing for sequential recommendation.
Related papers
- Slow Thinking for Sequential Recommendation [88.46598279655575]
We present a novel slow thinking recommendation model, named STREAM-Rec.
Our approach is capable of analyzing historical user behavior, generating a multi-step, deliberative reasoning process, and delivering personalized recommendations.
In particular, we focus on two key challenges: (1) identifying the suitable reasoning patterns in recommender systems, and (2) exploring how to effectively stimulate the reasoning capabilities of traditional recommenders.
arXiv Detail & Related papers (2025-04-13T15:53:30Z) - OneRec: Unifying Retrieve and Rank with Generative Recommender and Iterative Preference Alignment [9.99840965933561]
We propose OneRec, which replaces the cascaded learning framework with a unified generative model.
OneRec includes: 1) an encoder-decoder structure, which encodes the user's historical behavior sequences and gradually decodes the videos that the user may be interested in.
arXiv Detail & Related papers (2025-02-26T09:25:10Z) - SessionRec: Next Session Prediction Paradigm For Generative Sequential Recommendation [20.51953517144625]
We introduce SessionRec, a novel next-session prediction paradigm (NSPP) for generative sequential recommendation.<n>Unlike NIPP's item-level autoregressive generation that contradicts actual session-based user interactions, our framework introduces a session-aware representation learning.<n>We found that incorporating a rank loss for items within the session under the next session prediction paradigm can significantly improve the ranking effectiveness of generative sequence recommendation models.
arXiv Detail & Related papers (2025-02-14T13:36:20Z) - RaSeRec: Retrieval-Augmented Sequential Recommendation [27.276639257126664]
We propose a Retrieval-Augmented Sequential Recommendation framework, named RaSeRec.<n>RaSeRec maintains a dynamic memory bank to accommodate preference drifts and retrieve relevant memories to augment user modeling explicitly.<n>It consists of two stages: collaborative-based pre-training, which learns to recommend and retrieve; (ii) retrieval-augmented fine-tuning, which learns to leverage retrieved memories.
arXiv Detail & Related papers (2024-12-24T12:07:48Z) - Hierarchical Reinforcement Learning for Temporal Abstraction of Listwise Recommendation [51.06031200728449]
We propose a novel framework called mccHRL to provide different levels of temporal abstraction on listwise recommendation.
Within the hierarchical framework, the high-level agent studies the evolution of user perception, while the low-level agent produces the item selection policy.
Results observe significant performance improvement by our method, compared with several well-known baselines.
arXiv Detail & Related papers (2024-09-11T17:01:06Z) - CSRec: Rethinking Sequential Recommendation from A Causal Perspective [25.69446083970207]
The essence of sequential recommender systems (RecSys) lies in understanding how users make decisions.
We propose a novel formulation of sequential recommendation, termed Causal Sequential Recommendation (CSRec)
CSRec aims to predict the probability of a recommended item's acceptance within a sequential context and backtrack how current decisions are made.
arXiv Detail & Related papers (2024-08-23T23:19:14Z) - MISSRec: Pre-training and Transferring Multi-modal Interest-aware
Sequence Representation for Recommendation [61.45986275328629]
We propose MISSRec, a multi-modal pre-training and transfer learning framework for sequential recommendation.
On the user side, we design a Transformer-based encoder-decoder model, where the contextual encoder learns to capture the sequence-level multi-modal user interests.
On the candidate item side, we adopt a dynamic fusion module to produce user-adaptive item representation.
arXiv Detail & Related papers (2023-08-22T04:06:56Z) - Generative Slate Recommendation with Reinforcement Learning [49.75985313698214]
reinforcement learning algorithms can be used to optimize user engagement in recommender systems.
However, RL approaches are intractable in the slate recommendation scenario.
In that setting, an action corresponds to a slate that may contain any combination of items.
In this work we propose to encode slates in a continuous, low-dimensional latent space learned by a variational auto-encoder.
We are able to (i) relax assumptions required by previous work, and (ii) improve the quality of the action selection by modeling full slates.
arXiv Detail & Related papers (2023-01-20T15:28:09Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
We propose the model S3-Rec, which stands for Self-Supervised learning for Sequential Recommendation.
For our task, we devise four auxiliary self-supervised objectives to learn the correlations among attribute, item, subsequence, and sequence.
Extensive experiments conducted on six real-world datasets demonstrate the superiority of our proposed method over existing state-of-the-art methods.
arXiv Detail & Related papers (2020-08-18T11:44:10Z) - Sequential Recommendation with Self-Attentive Multi-Adversarial Network [101.25533520688654]
We present a Multi-Factor Generative Adversarial Network (MFGAN) for explicitly modeling the effect of context information on sequential recommendation.
Our framework is flexible to incorporate multiple kinds of factor information, and is able to trace how each factor contributes to the recommendation decision over time.
arXiv Detail & Related papers (2020-05-21T12:28:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.