Ultra-Low Complexity On-Orbit Compression for Remote Sensing Imagery via Block Modulated Imaging
- URL: http://arxiv.org/abs/2412.18417v1
- Date: Tue, 24 Dec 2024 13:18:00 GMT
- Title: Ultra-Low Complexity On-Orbit Compression for Remote Sensing Imagery via Block Modulated Imaging
- Authors: Zhibin Wang, Yanxin Cai, Jiayi Zhou, Yangming Zhang, Tianyu Li, Wei Li, Xun Liu, Guoqing Wang, Yang Yang,
- Abstract summary: This paper advances the study of compressed sensing in remote sensing image compression.
By requiring only a single exposure, Block Modulated Imaging (BMI) significantly enhances imaging acquisition speeds.
We propose a novel decoding network specifically designed to reconstruct images compressed under the BMI framework.
- Score: 17.334800411037836
- License:
- Abstract: The growing field of remote sensing faces a challenge: the ever-increasing size and volume of imagery data are exceeding the storage and transmission capabilities of satellite platforms. Efficient compression of remote sensing imagery is a critical solution to alleviate these burdens on satellites. However, existing compression methods are often too computationally expensive for satellites. With the continued advancement of compressed sensing theory, single-pixel imaging emerges as a powerful tool that brings new possibilities for on-orbit image compression. However, it still suffers from prolonged imaging times and the inability to perform high-resolution imaging, hindering its practical application. This paper advances the study of compressed sensing in remote sensing image compression, proposing Block Modulated Imaging (BMI). By requiring only a single exposure, BMI significantly enhances imaging acquisition speeds. Additionally, BMI obviates the need for digital micromirror devices and surpasses limitations in image resolution. Furthermore, we propose a novel decoding network specifically designed to reconstruct images compressed under the BMI framework. Leveraging the gated 3D convolutions and promoting efficient information flow across stages through a Two-Way Cross-Attention module, our decoding network exhibits demonstrably superior reconstruction performance. Extensive experiments conducted on multiple renowned remote sensing datasets unequivocally demonstrate the efficacy of our proposed method. To further validate its practical applicability, we developed and tested a prototype of the BMI-based camera, which has shown promising potential for on-orbit image compression. The code is available at https://github.com/Johnathan218/BMNet.
Related papers
- Learning Lossless Compression for High Bit-Depth Volumetric Medical Image [61.740026014860256]
This paper presents the Bit-Division based Lossless Volumetric Image Compression framework, which is tailored for high bit-depth medical volume compression.
The BD-LVIC framework skillfully divides the high bit-depth volume into two lower bit-depth segments: the Most Significant Bit-Volume (MSBV) and the Least Significant Bit-Volume (LSBV)
arXiv Detail & Related papers (2024-10-23T12:18:36Z) - COSMIC: Compress Satellite Images Efficiently via Diffusion Compensation [18.963383434754515]
We propose COSMIC, a simple yet effective learned compression solution to transmit satellite images.
We first design a lightweight encoder on satellite to achieve a high image compression ratio to save satellite-to-ground links.
Then, for reconstructions on the ground, we propose a diffusion-based model to compensate image details when decoding.
arXiv Detail & Related papers (2024-10-02T16:05:15Z) - Enhancing Perception Quality in Remote Sensing Image Compression via Invertible Neural Network [10.427300958330816]
Decoding remote sensing images to achieve high perceptual quality, particularly at lows, remains a significant challenge.
We propose the invertible neural network-based remote sensing image compression (INN-RSIC) method.
Our INN-RSIC significantly outperforms the existing state-of-the-art traditional and deep learning-based image compression methods in terms of perception quality.
arXiv Detail & Related papers (2024-05-17T03:52:37Z) - Convolutional variational autoencoders for secure lossy image compression in remote sensing [47.75904906342974]
This study investigates image compression based on convolutional variational autoencoders (CVAE)
CVAEs have been demonstrated to outperform conventional compression methods such as JPEG2000 by a substantial margin on compression benchmark datasets.
arXiv Detail & Related papers (2024-04-03T15:17:29Z) - MISC: Ultra-low Bitrate Image Semantic Compression Driven by Large Multimodal Model [78.4051835615796]
This paper proposes a method called Multimodal Image Semantic Compression.
It consists of an LMM encoder for extracting the semantic information of the image, a map encoder to locate the region corresponding to the semantic, an image encoder generates an extremely compressed bitstream, and a decoder reconstructs the image based on the above information.
It can achieve optimal consistency and perception results while saving perceptual 50%, which has strong potential applications in the next generation of storage and communication.
arXiv Detail & Related papers (2024-02-26T17:11:11Z) - Exploring Effective Mask Sampling Modeling for Neural Image Compression [171.35596121939238]
Most existing neural image compression methods rely on side information from hyperprior or context models to eliminate spatial redundancy.
Inspired by the mask sampling modeling in recent self-supervised learning methods for natural language processing and high-level vision, we propose a novel pretraining strategy for neural image compression.
Our method achieves competitive performance with lower computational complexity compared to state-of-the-art image compression methods.
arXiv Detail & Related papers (2023-06-09T06:50:20Z) - Deep Lossy Plus Residual Coding for Lossless and Near-lossless Image
Compression [85.93207826513192]
We propose a unified and powerful deep lossy plus residual (DLPR) coding framework for both lossless and near-lossless image compression.
We solve the joint lossy and residual compression problem in the approach of VAEs.
In the near-lossless mode, we quantize the original residuals to satisfy a given $ell_infty$ error bound.
arXiv Detail & Related papers (2022-09-11T12:11:56Z) - Analysis of the Effect of Low-Overhead Lossy Image Compression on the
Performance of Visual Crowd Counting for Smart City Applications [78.55896581882595]
Lossy image compression techniques can reduce the quality of the images, leading to accuracy degradation.
In this paper, we analyze the effect of applying low-overhead lossy image compression methods on the accuracy of visual crowd counting.
arXiv Detail & Related papers (2022-07-20T19:20:03Z) - Asymmetric Learned Image Compression with Multi-Scale Residual Block,
Importance Map, and Post-Quantization Filtering [15.056672221375104]
Deep learning-based image compression has achieved better ratedistortion (R-D) performance than the latest traditional method, H.266/VVC.
Many leading learned schemes cannot maintain a good trade-off between performance and complexity.
We propose an effcient and effective image coding framework, which achieves similar R-D performance with lower complexity than the state of the art.
arXiv Detail & Related papers (2022-06-21T09:34:29Z) - Modeling Lost Information in Lossy Image Compression [72.69327382643549]
Lossy image compression is one of the most commonly used operators for digital images.
We propose a novel invertible framework called Invertible Lossy Compression (ILC) to largely mitigate the information loss problem.
arXiv Detail & Related papers (2020-06-22T04:04:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.