Convolutional variational autoencoders for secure lossy image compression in remote sensing
- URL: http://arxiv.org/abs/2404.03696v2
- Date: Tue, 16 Apr 2024 20:06:16 GMT
- Title: Convolutional variational autoencoders for secure lossy image compression in remote sensing
- Authors: Alessandro Giuliano, S. Andrew Gadsden, Waleed Hilal, John Yawney,
- Abstract summary: This study investigates image compression based on convolutional variational autoencoders (CVAE)
CVAEs have been demonstrated to outperform conventional compression methods such as JPEG2000 by a substantial margin on compression benchmark datasets.
- Score: 47.75904906342974
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The volume of remote sensing data is experiencing rapid growth, primarily due to the plethora of space and air platforms equipped with an array of sensors. Due to limited hardware and battery constraints the data is transmitted back to Earth for processing. The large amounts of data along with security concerns call for new compression and encryption techniques capable of preserving reconstruction quality while minimizing the transmission cost of this data back to Earth. This study investigates image compression based on convolutional variational autoencoders (CVAE), which are capable of substantially reducing the volume of transmitted data while guaranteeing secure lossy image reconstruction. CVAEs have been demonstrated to outperform conventional compression methods such as JPEG2000 by a substantial margin on compression benchmark datasets. The proposed model draws on the strength of the CVAEs capability to abstract data into highly insightful latent spaces, and combining it with the utilization of an entropy bottleneck is capable of finding an optimal balance between compressibility and reconstruction quality. The balance is reached by optimizing over a composite loss function that represents the rate-distortion curve.
Related papers
- Autoencoded Image Compression for Secure and Fast Transmission [0.0]
This paper proposes an autoencoder architecture for image compression to help in dimensionality reduction and security.
The proposed architecture achieves an SSIM of 97.5% over the regenerated images and an average latency reduction of 87.5%.
arXiv Detail & Related papers (2024-07-04T15:07:39Z) - Semantic Ensemble Loss and Latent Refinement for High-Fidelity Neural Image Compression [58.618625678054826]
This study presents an enhanced neural compression method designed for optimal visual fidelity.
We have trained our model with a sophisticated semantic ensemble loss, integrating Charbonnier loss, perceptual loss, style loss, and a non-binary adversarial loss.
Our empirical findings demonstrate that this approach significantly improves the statistical fidelity of neural image compression.
arXiv Detail & Related papers (2024-01-25T08:11:27Z) - Neural-based Compression Scheme for Solar Image Data [8.374518151411612]
We propose a neural network-based lossy compression method to be used in NASA's data-intensive imagery missions.
In this work, we propose an adversarially trained neural network, equipped with local and non-local attention modules to capture both the local and global structure of the image.
As a proof of concept for use of this algorithm in SDO data analysis, we have performed coronal hole (CH) detection using our compressed images.
arXiv Detail & Related papers (2023-11-06T04:13:58Z) - Extreme Image Compression using Fine-tuned VQGANs [43.43014096929809]
We introduce vector quantization (VQ)-based generative models into the image compression domain.
The codebook learned by the VQGAN model yields a strong expressive capacity.
The proposed framework outperforms state-of-the-art codecs in terms of perceptual quality-oriented metrics.
arXiv Detail & Related papers (2023-07-17T06:14:19Z) - Improving Multi-generation Robustness of Learned Image Compression [16.86614420872084]
We show that LIC can achieve comparable performance to the first compression of BPG even after 50 times reencoding without any change of the network structure.
arXiv Detail & Related papers (2022-10-31T03:26:11Z) - Deep Lossy Plus Residual Coding for Lossless and Near-lossless Image
Compression [85.93207826513192]
We propose a unified and powerful deep lossy plus residual (DLPR) coding framework for both lossless and near-lossless image compression.
We solve the joint lossy and residual compression problem in the approach of VAEs.
In the near-lossless mode, we quantize the original residuals to satisfy a given $ell_infty$ error bound.
arXiv Detail & Related papers (2022-09-11T12:11:56Z) - Learned Video Compression via Heterogeneous Deformable Compensation
Network [78.72508633457392]
We propose a learned video compression framework via heterogeneous deformable compensation strategy (HDCVC) to tackle the problems of unstable compression performance.
More specifically, the proposed algorithm extracts features from the two adjacent frames to estimate content-Neighborhood heterogeneous deformable (HetDeform) kernel offsets.
Experimental results indicate that HDCVC achieves superior performance than the recent state-of-the-art learned video compression approaches.
arXiv Detail & Related papers (2022-07-11T02:31:31Z) - Reducing Redundancy in the Bottleneck Representation of the Autoencoders [98.78384185493624]
Autoencoders are a type of unsupervised neural networks, which can be used to solve various tasks.
We propose a scheme to explicitly penalize feature redundancies in the bottleneck representation.
We tested our approach across different tasks: dimensionality reduction using three different dataset, image compression using the MNIST dataset, and image denoising using fashion MNIST.
arXiv Detail & Related papers (2022-02-09T18:48:02Z) - Modeling Lost Information in Lossy Image Compression [72.69327382643549]
Lossy image compression is one of the most commonly used operators for digital images.
We propose a novel invertible framework called Invertible Lossy Compression (ILC) to largely mitigate the information loss problem.
arXiv Detail & Related papers (2020-06-22T04:04:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.