論文の概要: FedGIG: Graph Inversion from Gradient in Federated Learning
- arxiv url: http://arxiv.org/abs/2412.18513v1
- Date: Tue, 24 Dec 2024 15:52:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:55:26.351746
- Title: FedGIG: Graph Inversion from Gradient in Federated Learning
- Title(参考訳): FedGIG:フェデレートラーニングにおけるグラディエントからのグラフインバージョン
- Authors: Tianzhe Xiao, Yichen Li, Yining Qi, Haozhao Wang, Ruixuan Li,
- Abstract要約: 本稿では、まず、GAAがFGL(Federated Graph Learning)に与える影響を考察し、FedGIG(Graph Inversion from Gradient in Federated Learning)を紹介する。
FedGIGはグラフ構造化データに特化して設計された新しいGIA手法である。
- 参考スコア(独自算出の注目度): 15.10812005682518
- License:
- Abstract: Recent studies have shown that Federated learning (FL) is vulnerable to Gradient Inversion Attacks (GIA), which can recover private training data from shared gradients. However, existing methods are designed for dense, continuous data such as images or vectorized texts, and cannot be directly applied to sparse and discrete graph data. This paper first explores GIA's impact on Federated Graph Learning (FGL) and introduces Graph Inversion from Gradient in Federated Learning (FedGIG), a novel GIA method specifically designed for graph-structured data. FedGIG includes the adjacency matrix constraining module, which ensures the sparsity and discreteness of the reconstructed graph data, and the subgraph reconstruction module, which is designed to complete missing common subgraph structures. Extensive experiments on molecular datasets demonstrate FedGIG's superior accuracy over existing GIA techniques.
- Abstract(参考訳): 近年の研究では、Federated Learning (FL) は、共有勾配からプライベートトレーニングデータを復元するグラディエント・インバージョン・アタック(GIA)に弱いことが示されている。
しかし、既存の手法は画像やベクトル化テキストのような高密度で連続的なデータのために設計されており、スパースグラフデータや離散グラフデータに直接適用することはできない。
本稿では、まず、GAAがFGL(Federated Graph Learning)に与える影響を考察し、グラフ構造化データに特化して設計された新しいGIA手法である、FedGIG(Gradient in Federated Learning)のグラフ変換を紹介する。
FedGIGには、再構成されたグラフデータの空間性と離散性を保証する隣接行列制約モジュールと、欠落する共通部分グラフ構造を完備するように設計された部分グラフ再構築モジュールが含まれている。
分子データセットに関する大規模な実験は、既存のGAA技術よりもFedGIGの精度が優れていることを示している。
関連論文リスト
- Gradient Inversion Attack on Graph Neural Networks [11.735290341808064]
悪意のある攻撃者は、フェデレート学習中にニューラルネットワークの勾配を交換することで、プライベートイメージデータを盗むことができる。
広く使われている2つのGNNフレームワーク、すなわちGCNとGraphSAGEが分析されている。
グラフデータの一部が勾配から漏れることが示されている。
論文 参考訳(メタデータ) (2024-11-29T02:42:17Z) - GALA: Graph Diffusion-based Alignment with Jigsaw for Source-free Domain Adaptation [13.317620250521124]
ソースコードのないドメイン適応は、現実世界で多くのアプリケーションを含むため、重要な機械学習トピックである。
最近のグラフニューラルネットワーク(GNN)アプローチは、ドメインシフトとラベルの不足により、パフォーマンスが著しく低下する可能性がある。
本稿では, ソースフリーなグラフドメイン適応に適した Jigsaw (GALA) を用いたグラフ拡散に基づくアライメント法を提案する。
論文 参考訳(メタデータ) (2024-10-22T01:32:46Z) - Can Modifying Data Address Graph Domain Adaptation? [20.343259091425708]
Unsupervised Graph Domain Adaptation (UGDA)は、ラベル付きソースグラフからラベル付きターゲットグラフへの知識伝達を容易にすることを目的としている。
小さいが転送可能なグラフを生成する新しいUGDA法であるGraphAlignを提案する。
古典的な経験的リスク最小化(ERM)を備えた新しいグラフ上で、GNNのみをトレーニングすることにより、GraphAlignは、ターゲットグラフ上での例外的なパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-07-27T17:56:31Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
本稿では,この新たな問題設定の数学的定義を紹介する。
一つのグラフ共有構造学習者と複数のグラフ固有GNNを協調する一般的なフレームワークを考案する。
十分に訓練された構造学習者は、微調整なしで、目に見えない対象グラフの適応的な構造を直接生成することができる。
論文 参考訳(メタデータ) (2023-06-20T03:33:22Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
コントラスト学習は、監督の有無にかかわらず、表現を学習するための第一の方法として現れてきた。
近年の研究では、グラフ表現学習における事前学習の有用性が示されている。
本稿では,グラフの対照的な目的に対する拡張を構築する際に,候補のバンクを提供するためのグラフ変換操作を提案する。
論文 参考訳(メタデータ) (2023-02-06T16:26:29Z) - Graph-Free Learning in Graph-Structured Data: A More Efficient and
Accurate Spatiotemporal Learning Perspective [11.301939428860404]
本稿では,グラフ時間学習における空間相関を捉えるための正規化のためのグラフ自由学習モジュールを提案する。
厳密な理論的な証明は、時間複雑性が提案されたグラフ畳み込み演算よりもはるかに優れていることを証明している。
論文 参考訳(メタデータ) (2023-01-27T14:26:11Z) - Improving Subgraph Recognition with Variational Graph Information
Bottleneck [62.69606854404757]
部分グラフ認識は、グラフ特性に最も有益であるグラフの圧縮された部分構造を発見することを目的としている。
本稿では,サブグラフ内の情報を圧縮するためのノイズ注入手法を提案する。
論文 参考訳(メタデータ) (2021-12-18T10:51:13Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
GNNを反転させてトレーニンググラフのプライベートグラフデータを抽出することを目的とした textbfGraph textbfModel textbfInversion attack (GraphMI) を提案する。
具体的には,グラフ特徴の空間性と滑らかさを保ちながら,グラフエッジの離散性に対処する勾配モジュールを提案する。
エッジ推論のためのグラフトポロジ、ノード属性、ターゲットモデルパラメータを効率的に活用するグラフ自動エンコーダモジュールを設計する。
論文 参考訳(メタデータ) (2021-06-05T07:07:52Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
学習中に勾配に基づく逆方向摂動を伴うノード特徴を反復的に拡張するFLAG(Free Large-scale Adversarial Augmentation on Graphs)を提案する。
FLAGはグラフデータに対する汎用的なアプローチであり、ノード分類、リンク予測、グラフ分類タスクで普遍的に機能する。
論文 参考訳(メタデータ) (2020-10-19T21:51:47Z) - Unsupervised Graph Embedding via Adaptive Graph Learning [85.28555417981063]
グラフオートエンコーダ(GAE)は、グラフ埋め込みのための表現学習において強力なツールである。
本稿では,2つの新しい教師なしグラフ埋め込み法,適応グラフ学習(BAGE)による教師なしグラフ埋め込み,変分適応グラフ学習(VBAGE)による教師なしグラフ埋め込みを提案する。
いくつかのデータセットに関する実験的研究により、我々の手法がノードクラスタリング、ノード分類、グラフ可視化タスクにおいて、ベースラインよりも優れていることが実証された。
論文 参考訳(メタデータ) (2020-03-10T02:33:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。