論文の概要: Long-Form Speech Generation with Spoken Language Models
- arxiv url: http://arxiv.org/abs/2412.18603v1
- Date: Tue, 24 Dec 2024 18:56:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:54:18.266122
- Title: Long-Form Speech Generation with Spoken Language Models
- Title(参考訳): 音声言語モデルを用いた長期音声生成
- Authors: Se Jin Park, Julian Salazar, Aren Jansen, Keisuke Kinoshita, Yong Man Ro, RJ Skerry-Ryan,
- Abstract要約: SpeechSSMは、テキスト中間子なしで1つの復号セッションで長い形式の音声を学習し、サンプリングする。
新しい埋め込みベースとLLM-judgedメトリクス、長さと時間による品質測定、長文音声処理と生成のための新しいベンチマークであるLibriSpeech-Long。
- 参考スコア(独自算出の注目度): 64.29591880693468
- License:
- Abstract: We consider the generative modeling of speech over multiple minutes, a requirement for long-form multimedia generation and audio-native voice assistants. However, current spoken language models struggle to generate plausible speech past tens of seconds, from high temporal resolution of speech tokens causing loss of coherence, to architectural issues with long-sequence training or extrapolation, to memory costs at inference time. With these considerations we propose SpeechSSM, the first speech language model to learn from and sample long-form spoken audio (e.g., 16 minutes of read or extemporaneous speech) in a single decoding session without text intermediates, based on recent advances in linear-time sequence modeling. Furthermore, to address growing challenges in spoken language evaluation, especially in this new long-form setting, we propose: new embedding-based and LLM-judged metrics; quality measurements over length and time; and a new benchmark for long-form speech processing and generation, LibriSpeech-Long. Speech samples and the dataset are released at https://google.github.io/tacotron/publications/speechssm/
- Abstract(参考訳): 本稿では,複数分間にわたる音声生成のモデル化を,長文マルチメディア生成と音声ネイティブ音声アシスタントの要件として検討する。
しかし、現在の音声言語モデルは、コヒーレンスを損なう音声トークンの高時間分解から、長時間のトレーニングや外挿によるアーキテクチャ問題、推論時のメモリコストに至るまで、数十秒間の可読音声を生成するのに苦労している。
これらの考察に基づき,線形時間列モデリングの最近の進歩に基づき,テキスト中間を伴わない1つの復号セッションにおいて,長文音声から学習し,サンプルする最初の音声言語モデルであるSpeechSSMを提案する。
さらに, 音声言語評価における課題の増大, 特にこの新たな長期的設定において, 組込みベースとLLM-judgedメトリクス, 長さと時間による品質測定, 長文音声処理と生成のための新しいベンチマーク, LibriSpeech-Longを提案する。
音声サンプルとデータセットはhttps://google.github.io/tacotron/publications/speechssm/で公開される。
関連論文リスト
- Scaling Speech-Text Pre-training with Synthetic Interleaved Data [31.77653849518526]
音声言語モデル(SpeechLM)は音声入力を受け入れ、音声出力を生成し、より自然な人間とコンピュータの相互作用を可能にする。
従来のSpeechLMの開発手法は、教師なし音声データとパラレル音声テキストデータの可用性の制限によって制約されている。
本稿では,テキストコーパスから得られた大規模合成インターリーブデータを活用することによって,音声テキスト事前学習のスケールアップを行う手法を提案する。
論文 参考訳(メタデータ) (2024-11-26T17:19:09Z) - VoiceTextBlender: Augmenting Large Language Models with Speech Capabilities via Single-Stage Joint Speech-Text Supervised Fine-Tuning [64.56272011710735]
大規模言語モデル(LLM)のバックボーンの低ランク適応(LoRA)に対して,新しい単一段階共同音声テキストSFTアプローチを提案する。
従来のSpeechLMの7Bまたは13Bパラメータと比較すると,我々の3Bモデルは様々な音声ベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2024-10-23T00:36:06Z) - Recent Advances in Speech Language Models: A Survey [45.968078636811356]
音声言語モデル(SpeechLMs)は、テキストから変換することなく音声を生成するエンドツーエンドモデルである。
本稿では,近年のSpeechLM構築手法について概観する。
論文 参考訳(メタデータ) (2024-10-01T21:48:12Z) - Moshi: a speech-text foundation model for real-time dialogue [78.88479749811376]
現在の音声対話システムは、パイプラインの独立した音声活動検出と音声合成に依存している。
そこで本研究では,Moshi Moshiが音声認識と音声合成を実現する方法を紹介する。
得られたモデルは、初めてリアルタイムな全音声大言語モデルモダリティである。
論文 参考訳(メタデータ) (2024-09-17T17:55:39Z) - Generative Pre-trained Speech Language Model with Efficient Hierarchical Transformer [39.31849739010572]
textbfGenerative textbfPre-trained textbfSpeech textbfTransformer (GPST)を紹介する。
GPSTは効率的な音声言語モデリングのために設計された階層変換器である。
論文 参考訳(メタデータ) (2024-06-03T04:16:30Z) - AudioPaLM: A Large Language Model That Can Speak and Listen [79.44757696533709]
本稿では,音声理解・生成のための大規模言語モデルであるAudioPaLMを紹介する。
AudioPaLMはテキストベースの言語モデルと音声ベースの言語モデルを融合する。
音声認識や音声音声翻訳などの応用により、テキストと音声を処理および生成することができる。
論文 参考訳(メタデータ) (2023-06-22T14:37:54Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
音節や音素を含む言語単位に基づくLSTMに基づく新しい生成音声LMを提案する。
限られたデータセットでは、現代の生成モデルで要求されるものよりも桁違いに小さいので、我々のモデルはバブリング音声を近似する。
補助的なテキストLM,マルチタスク学習目標,補助的な調音特徴を用いた訓練の効果を示す。
論文 参考訳(メタデータ) (2021-10-31T22:48:30Z) - Bridging the Modality Gap for Speech-to-Text Translation [57.47099674461832]
エンド・ツー・エンドの音声翻訳は、ある言語における音声を、エンド・ツー・エンドの方法で他の言語におけるテキストに変換することを目的としている。
既存のほとんどの手法では、音響表現と意味情報を同時に学習するために、単一のエンコーダを持つエンコーダ・デコーダ構造を用いる。
本稿では,音声とテキスト間のモダリティギャップを埋めることで,エンドツーエンドのモデル性能を向上させることを目的とした音声翻訳モデルのための音声テキスト適応手法を提案する。
論文 参考訳(メタデータ) (2020-10-28T12:33:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。