論文の概要: Pruning Unrolled Networks (PUN) at Initialization for MRI Reconstruction Improves Generalization
- arxiv url: http://arxiv.org/abs/2412.18668v1
- Date: Tue, 24 Dec 2024 20:01:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:27:30.988654
- Title: Pruning Unrolled Networks (PUN) at Initialization for MRI Reconstruction Improves Generalization
- Title(参考訳): MRI再構成の初期化におけるPUN(Pruning Unrolled Networks)の一般化改善
- Authors: Shijun Liang, Evan Bell, Avrajit Ghosh, Saiprasad Ravishankar,
- Abstract要約: 本研究では,訓練時に深部画像再構成ネットワークを切断することで,分布変化に対するロバスト性を向上できることを実証する。
実験により、従来の高密度ネットワークと比較して、PUNは様々な実験環境における一般化を改善していることが示された。
- 参考スコア(独自算出の注目度): 7.584719124076339
- License:
- Abstract: Deep learning methods are highly effective for many image reconstruction tasks. However, the performance of supervised learned models can degrade when applied to distinct experimental settings at test time or in the presence of distribution shifts. In this study, we demonstrate that pruning deep image reconstruction networks at training time can improve their robustness to distribution shifts. In particular, we consider unrolled reconstruction architectures for accelerated magnetic resonance imaging and introduce a method for pruning unrolled networks (PUN) at initialization. Our experiments demonstrate that when compared to traditional dense networks, PUN offers improved generalization across a variety of experimental settings and even slight performance gains on in-distribution data.
- Abstract(参考訳): 深層学習法は多くの画像再構成作業に有効である。
しかし、教師付き学習モデルの性能は、テスト時や分布シフトの有無で異なる実験環境に適用した場合に劣化する可能性がある。
本研究では,訓練時に深部画像再構成ネットワークを切断することで,分布変化に対するロバスト性を向上できることを実証する。
特に、高速な磁気共鳴イメージングのための非ローリング再構成アーキテクチャについて検討し、初期化時に非ローリングネットワーク(PUN)を刈り取る方法を提案する。
実験により,従来の高密度ネットワークと比較した場合,PUNは様々な実験環境にまたがる一般化や,分布内データに対する若干の性能向上を実現していることがわかった。
関連論文リスト
- Analysis of Deep Image Prior and Exploiting Self-Guidance for Image
Reconstruction [13.277067849874756]
DIPがアンダーサンプドイメージング計測からどのように情報を回収するかを検討する。
ネットワーク重みと入力の両方を同時に最適化する自己駆動型再構築プロセスを導入する。
提案手法は,ネットワーク入力画像と再構成画像の両方の堅牢かつ安定した関節推定を可能にする,新しいデノイザ正規化項を組み込んだものである。
論文 参考訳(メタデータ) (2024-02-06T15:52:23Z) - Reinforcement Learning for Sampling on Temporal Medical Imaging
Sequences [0.0]
本研究では、動的画像再構成のためのサンプリング戦略を学ぶために、ダブルディープQ-ラーニングとREINFORCEアルゴリズムを適用した。
時系列のフォーマットでデータを考察し、再構成法は事前訓練されたオートエンコーダ型ニューラルネットワークである。
本稿では,強化学習アルゴリズムが最適サンプリングパターンの発見に有効であることを示す。
論文 参考訳(メタデータ) (2023-08-28T23:55:23Z) - Residual Back Projection With Untrained Neural Networks [1.2707050104493216]
CT(Computed tomography)における反復的再構成(IR)の枠組みについて述べる。
我々のフレームワークは、この構造情報をDIP(Deep Image Prior)として組み込んでいる。
対象関数を最小限に抑え,高精度な再構成を実現するために,未学習のU-netと新たな後方投射を併用して提案する。
論文 参考訳(メタデータ) (2022-10-26T01:58:09Z) - Invertible Sharpening Network for MRI Reconstruction Enhancement [17.812760964428165]
InvSharpNet(InvSharpNet)は,MRI再建の視覚的品質を改善するために提案される。
入力データを地上の真実にマッピングする従来の方法とは異なり、InvSharpNetは、ぼやけた変換を学ぶための後方トレーニング戦略を適用している。
さまざまなMRIデータセットの実験では、InvSharpNetはアーティファクトの少ない再構築シャープネスを改善することができる。
論文 参考訳(メタデータ) (2022-06-06T18:21:48Z) - Adaptive Local Neighborhood-based Neural Networks for MR Image
Reconstruction from Undersampled Data [7.670270099306413]
近年の研究では,少ないサンプルのk空間データから深層学習を用いたMR画像の再構成が期待されている。
そこで本研究では,ニューラルネットワークを適応的に推定された訓練セットの小さな地区に適合させることにより,再構築時に直接ディープニューラルネットワークを推定する手法を提案する。
提案手法は,大規模データセットおよび他のスキャン適応手法を用いて世界規模で訓練されたモデルと比較して,高品質な再構成を実現することを示す。
論文 参考訳(メタデータ) (2022-06-01T21:37:03Z) - Towards performant and reliable undersampled MR reconstruction via
diffusion model sampling [67.73698021297022]
DiffuseReconは拡散モデルに基づく新しいMR再構成法である。
観測された信号に基づいて生成過程を導出する。
特定の加速因子に関する追加の訓練は必要としない。
論文 参考訳(メタデータ) (2022-03-08T02:25:38Z) - Is Deep Image Prior in Need of a Good Education? [57.3399060347311]
画像再構成に有効な先行画像として, 奥行き画像が導入された。
その印象的な再建性にもかかわらず、学習技術や伝統的な再建技術と比べてアプローチは遅い。
計算課題に対処する2段階の学習パラダイムを開発する。
論文 参考訳(メタデータ) (2021-11-23T15:08:26Z) - Two-Stage Self-Supervised Cycle-Consistency Network for Reconstruction
of Thin-Slice MR Images [62.4428833931443]
太いスライス磁気共鳴(MR)画像は、しばしば冠状および矢状視で構造的にぼやけている。
深層学習は、これらの低分解能(LR)症例から高分解能(HR)薄膜MR画像を再構築する大きな可能性を示している。
MRスライス再構成のための2段階自己監督型サイクル一貫性ネットワーク(TSCNet)を提案する。
論文 参考訳(メタデータ) (2021-06-29T13:29:18Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
MR画像再構成のための最近のディープラーニングに基づく手法は、通常、汎用的なオートエンコーダアーキテクチャを利用する。
OUCR(Over-and-Under Complete Convolu?tional Recurrent Neural Network)を提案する。
提案手法は, トレーニング可能なパラメータの少ない圧縮されたセンシングと, 一般的なディープラーニングに基づく手法に対して, 大幅な改善を実現する。
論文 参考訳(メタデータ) (2021-06-16T15:56:34Z) - Enhancing Photorealism Enhancement [83.88433283714461]
本稿では,畳み込みネットワークを用いた合成画像のリアリズム向上手法を提案する。
一般的に使用されるデータセットのシーンレイアウトの分布を分析し、重要な方法で異なることを見つけます。
近年のイメージ・ツー・イメージ翻訳法と比較して,安定性とリアリズムの大幅な向上が報告されている。
論文 参考訳(メタデータ) (2021-05-10T19:00:49Z) - Iterative Network for Image Super-Resolution [69.07361550998318]
単一画像超解像(SISR)は、最近の畳み込みニューラルネットワーク(CNN)の発展により、大幅に活性化されている。
本稿では、従来のSISRアルゴリズムに関する新たな知見を提供し、反復最適化に依存するアプローチを提案する。
反復最適化の上に,新しい反復型超解像ネットワーク (ISRN) を提案する。
論文 参考訳(メタデータ) (2020-05-20T11:11:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。